
The History of Infinity1
What is it?

Where did it come from?
How do we use it?

Who are the inventors?

1 The Beginning

As there is no record of earlier civilizations regarding, conceptualiz-
ing, or discussing infinity, we will begin the story of infinity with the
ancient Greeks. According Anaximander of Miletus (mid-6th century
BCE) and student of Thales, the word apeiron meant unbounded, in-
finite, indefinite, or undefined. Originally it was used to reference the
unlimited mass possessing no specific qualities. This was the universal
state preceeding the separation into contrasting qualities, such as hot
and cold, wet and dry. Thus apeiron represented the primitive unity
of all phenomena. For the Greeks, the original chaos out of which the
world was formed was apeiron.

Eventually, it became a negative, even pejorative word. Aristotle
thought being infinite was a privation not perfection. It was the absence
of limit. Pythagoreans had no traffic with infinity. Everything in their
world was number. Indeed, the Pythagoreans associated good and evil
with finite and infinite. Though it was not well understood at the
time, the Pythagorean discovery of incommensurables, for example

√
2,

would require a clear concept and understanding of infinity.

Yet, to the Greeks, the concept of infinity was forced upon them from
the physical world by three traditional observations.

� Time seems without end.

� Space and time can be unendingly subdivided.

� Space is without bound.
1 c°2000-03, G. Donald Allen
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That time appears to have no end is not too curious. Perhaps, owing to
the non-observability of world-ending events as in our temporal world
of life and death, this seems to be the way the universe is. The second,
the apparent conceivability of unending subdivisions of both space and
time, introduces the ideas of the infinitesimal and the infinite process.
In this spirit, the circle can be viewed as the result of a limit of inscribed
regular polygons with increasing numbers of sides.2 These two have
had a lasting impact, requiring the notion of infinity to be clarified.
Zeno, of course, formulated his paradoxes by mixing finite reasoning
with infinite and limiting processes. The third was possibly not an
issue with the Greeks as they believed that the universe was bounded.
Curiously, the prospect of time having no beginning did not perplex the
Greeks, nor other cultures to this time.

With theorems such that the number of primes is without bound and
thus the need for numbers of indefinite magnitude, the Greeks were
faced with the prospect of infinity. Aristotle avoided the actuality of
infinity by defining a minimal infinity, just enough to allow these the-
orems, while not introducing a whole new number that is, as we will
see, fraught with difficulties. This definition of potential, not actual,
infinity worked and satisfied mathematicians and philosophers for two
millenia. So, the integers are potentially infinite because we can always
add one to get a larger number, but the infinite set (of numbers) as such
does not exist.

Aristotle argues that most magnitudes cannot be even potentially in-
finite because by adding successive magnitudes it is possible to exceed
the bounds of the universe. But the universe is potentially infinite in
that it can be repeatedly subdivided. Time is potentially infinite in both
ways. Reflecting the Greek thinking, Aristotle says the infinite is im-
perfect, unfinished and unthinkable, and that is about the end of the
Greek contributions. In geometry, Aristotle admits that points are on
lines but points do not comprise the line and the continuous cannot be
made of the discrete. Correspondingly, the definitions in Euclid�s The
Elements reflect the less than clear image of these basic concepts. In
Book I the definitions of point and line are given thusly:

2It was this observation that Þrst inspired mathematicians to believe that the circle can
be squared with a compass and straight edge. It is a simple matter to square a polygon. Can
the limiting case be more difficult, it was thought? It was, and would not be resolved until
1881 by Lindemann.
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Definition 1. A point is that which has not part.
Definition 4. A straight line is a line which lies evenly with
the points on itself.

The attempts were consistent with other Greek definitions of primitive
concepts, particularly when involving the infinitesimal and the infinite
(e.g. the continuum). The Greek inability to assimilate infinity beyond
the potential-counting infinity had a deep and limiting impact on their
mathematics.

Nonetheless, infinity, which is needed in some guise, can be avoided
by inventive wording. In Euclid�s The Elements, the very definition of
a point, A point is that which has no part, invokes ideas of the infinite
divisibility of space. In another situation, Euclid avoids the infinite in
defining a line by saying it can be extended as far as necessary. The
parallel lines axiom requires lines to be extended indefinitely, as well.
The proof of the relation between the area of a circle and its diameter
is a limiting process in the cloak of a finite argument via the method of
exhaustion. Archimedes proved other results that today would be better
proved using calculus.

These theorems were proved using the method of exhaustion, which in
turn is based on the notion of �same ratio�, as formulated by Eudoxus.
We say
a

b
=
c

d
if for every positive integers m, n it follows that

ma < nb implies mc < nd and likewise for > and = .

This definition requires an infinity of tests to validate the equality
of the two ratios, though it is never mentioned explicitly. With this
definition it becomes possible to prove the Method of Exhaustion. It is

By successively removing half or more from an object, it�s
size can be made indefinitely small.

The Greeks were reluctant to use the incommensurables to any great
degree. One of the last of the great Greek mathematicians, Diophantus,
developed a new field of mathematics being that of solving algebraic
equations for integer or rational solutions. This attempt could be con-
sidered in some way a denial of the true and incommensurable nature
of the solutions of such equations.
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Following the Greeks, the Arabs became the custodians of Greek her-
itage and advanced mathematical knowledge in general, particularly in
algebra. They worked freely with irrationals as objects but did not ex-
amine closely their nature. This would have to wait another thousand
years.

2 Ideas become clearer

Following the Arabs, European mathematicians worked with irrationals
as well, though there was some confusion with infinity itself. St. Au-
gustine adopted the Platonic view that God was infinite and could have
infinite thoughts. St Thomas Aquinas allowed the unlimitness of God
but denied he made unlimited things. Nicolas of Cusa (1401 - 1464)
was a circle-squarer3 that used infinity and infinite process as anal-
ogy to achieving truth and heavenly Grace. A type of paradox arose
in medieval thinking. It was understood that a larger circle should
have more points than a smaller circle, but that they are in one-to-one
correspondence. (See below.)

3Though many ancient Greeks believed that the circle could not be squared by a compass
and straight-edge, Cusa thought he could do so. One key was his belief that a circle is a
polygon with the greatest possible number of sides.
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one-to-one

In 1600 Galileo (1564 - 1642) suggested the inclusion of an infinite
number of infinitely small gaps. But he understood the problem was
using finite reasoning on infinite things. He said, �It is wrong to speak
of infinite quantities as being the one greater or less than or equal to
the other.� With the insight of genius, he claimed infinity is not an
inconsistent notion, but rather it obeys different rules.

In a more practical direction, Leonardo of Pisa (ca. 1170 - ca. 1250),
known better as Fibonacci, demonstrated a cubic equation that could
not be solved within the context of any of the numbers discussed in
Euclid. (That is those numbers of the form

q√
a±√b, where a and

b are rational.) Moreover, confusion was evident in understanding the
nature of irrationals and its ultimate link with infinity. In his book
Arithmetica Integra of 1544, Michael Stifel (1487-1567) makes the
following observations about irrationals. There are irrationals because
they work in proving geometrical figures. But how can they be because
when you try to give a decimal representation they flee away. We can�t
get our hands on them. Thus, an irrational is not a true number, but
lies hidden in a cloud of infinity. This typifies the confused, uncertain
feeling of professional mathematicians, while clearly illustrating the
connection to infinity.

The nature of infinity was not clarified until 1874, with a fundamental
paper by Georg Cantor. In the interim, calculus and analysis was born
and fully developed into a prominent area of mathematics.

Steven Simon (1548-1620), an engineer by trade, was one of the ear-
liest mathematicians to abandon the double reductio ad absurdum ar-
gument of antiquity and adopt a limit process without the �official�



The History of Infinity 6

trappings of the Greeks, the double reductio ad absurdum argument.
This was the acceptance of limits as an infinite process not requiring
metrization. In one result, Simon proves that the median of a triangle
divides it into two triangles of equal area.

A

B

CD

He accomplished this by a successive subdivision argument into rec-
tangles and estimating the excess. was a practical mathematician/engineer
who desired to establish results in an understandable way and to spread
the new decimal methods. The limiting part of his argument, that 1

2n

tends to zero as n→∞, he took as self-evident.

Fermat took limiting processes in another direction in proving quadra-
ture formulas for power functions xp. His arguments appear in many
ways modern, though again, his limiting process involves an essential
step not unlike Simon�s.

At this point the following arguments seem certain. There can be no
theory of irrationals without a working facility and definition of infinity.
Without a theory of irrationals, there can be no analysis, and without
analysis, mathematics would be without a major branch. Even still, the
understanding of polynomials can never be complete without a thorough
understanding of irrationals, though not perhaps in the same way.
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3 The Emergence of Calculus

John Wallis (1616-1703), arguably the most important mathematician in
17th century England except Newton, was Savilian professor of geom-
etry at Oxford, having originally studied theology. In his work Arith-
metica Infinitorum he extends the work of Torricelli (1608 - 1647)and
Cavalieri (1598 - 1647) on indivisibles4 and establishes, by a great leap
of induction that

4

π
=
3 · 3 · 5 · 5 · 7 · 7 · 9 · · ·
2 · 4 · 4 · 6 · 6 · 8 · 8 · · ·

This infinite expansion for π, though not the first, clearly illustrates an
infinite process without justification. In 1657 Wallis gives the symbol,
∞, which indicates an unending curve. It caught on immediately. He
also introduced fractional power notation.

Like Wallis, Newton, Leibniz, the Bernoulli�s, Euler, and others that
invented and then pursued the new calculus, there was little serious
regard for proof and for any theory of limits and the infinite. An ∞
appearing in a computation would be attributed to be a paradox. The
mathematical legitimacy of the calculation of derivatives by Newton,
based on moments was faulted by George Berkeley, Anglican bishop
of Cloyne, in his book The Analyst. Let�s review the argument for
computing the derivative of x2 alá Issac Newton (1642-1727). We
compute the difference

(x+ o)2 − x2 = x2 + 2xo+ o2 − x2
= 2x o+ o2

Divide by the moment o to get

2x+ o

Now drop the term o to get the derivative 2x. This was exactly what
Bishop Berkeley objected to. How, he argued, can this mathematics
be legitimate when on the one hand one computes with the term o
as if it is a true number and then simply eliminates it when needed.

4The theory of indivisibles is one of the more curious �false starts� on the road to calculus.
With it one assumes that an area consists of a continuum of vertical lines extending from the
bottom of the region to the top. Requiring subtle interpretations of area, it was difficult to
apply. Indeed, though quadratures for powers were obtained, quadratures of other functions
were not obtained in this way.
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Berkeley did not object to the spectacular results this new analysis was
achieving, but his objection struck at the heart of what had not yet been
mathematically articulated as a legitimate process. He writes,

And what are these fluxion? The velocities of evanescent in-
crements? And what are these evanescent increments? They
are neither finite quantities, nor quantities infinitely small,
nor yet nothing. May we not call them the ghosts of de-
parted quantities?

Newton did give a definition of the derivative similar in appearance
to the modern definition but sufficiently far off the mark not to satisfy
objections. There resulted, on the basis of Berkeley�s objection, a strong
effort to place calculus on a theoretical foundation, but this was not to
be achieved for another two centuries. In A Defense of Free-thinking
in Mathematics of 1735, which was a response to a rejoinder to The
Analyst Berkeley devastates the new analysis:

Some fly to proportions between nothings. Some reject quan-
tities because [they are] infinitesimal. Others allow only fi-
nite quantities and reject them because inconsiderable. Oth-
ers place the method of fluxions on a foot with that of ex-
haustions, and admit nothing new therein. Others hold they
can demonstrate about things incomprehensible. Some would
prove the algorithm of fluxions by reductio ad absurdum; oth-
ers a priori. Some hold the evanescent increments to be real
quantities, some to be nothings, some to be limits. As many
men, so many minds... Lastly several ... frankly owned the
objections to be unanswerable.

The great Leonard Euler (1707-1783) did not improve the theoretical
state of affairs at all. He pursued the new analysis with an abandon
that would have cautioned even Newton and Leibniz. Consider these
two series studied by Euler.

1

(x+ 1)2
= 1− 2x+ 3x2 − 4x3 · · · (∗)

1

1− x = 1 + x+ x2 + x2 + · · · (∗∗)
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Put x = −1 into (*) and there results

∞ = 1 + 2 + 3 + · · ·
Put x = 2 into (**) and there results

−1 = 1 + 2 + 4 + · · ·
The series for −1 is term-for-term greater than the series for ∞. There-
fore,

−1 >∞
These sort of computations were prevalent in the analysis of the day
and were called paradoxes. By substituting x = −1 into (**), Euler
also noted

1

2
= 1− 1 + 1− 1 + · · ·

Euler freely allowed 0
0

to have a definite value, and thereby was influ-
ential in advancing the proportion between nothings. Such was the state
of affairs, a field exploding with knowledge and profound results that
still impact modern mathematics, with intrinsic inconsistencies neither
understood nor for which there was anything resembling a theory. The
Greek model of rigorous, axiomatic geometry had been forgotten.

4 The Roots of InÞnity

What finally forced the issue were consequences owing to trigonometric
series. Jean d�Alembert (1717-1783) derived essentially the modern
wave equation for the vibrating string, and showed that trigonometric
series could be used to solve it. This was a considerable departure from
power series, for which most mathematicians understood the limits of
validity. On the other hand, trigonometric series were new and more
difficult to analyze. d�Alembert limited himself to initial conditions
that were periodic functions, making the analysis easier. Euler, shortly
afterward allowed the initial condition to be any function free of jumps
as the string was one piece.5 He insured the periodicity by extending it

5To the mathematicians of this time, the concept of function was murky. At this time
Euler, interpreted a function to be an analytical expression, or a Þnite number of analytical
expressions pieced together.
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periodically outside the interval. Daniel Bernoulli (1700-1782) took the
ideas further by claiming all the new curves, those defined piecewise
by expressions, could be represented by trigonometric series. This was
soundly rejected by d�Alembert and Euler. Euler argued that functions
cannot be continuous and discontinuous.

The state of affairs remained unresolved for almost a century until Jean
Baptiste Joseph de Fourier (1768-1830) applied trigonometric series to
the heat problem. The trigonometric series are similar to those for the
wave equation, but the requirement of continuity of initial conditions
was not demanded, if only on physical grounds, as it was for the vibrat-
ing string. His fundamental paper of 1807 was rejected by no less than
Legendre, Laplace, and Lagrange, though later his continued work was
encouraged. Fourier returned to the interpretation of the coefficients of
the Fourier series as areas, as opposed to antiderivatives. Consider the
sine series.

f(x) =
∞X
n=1

bn sinnx

bn =
2

π

Z π

0
f(s) sinns ds

Fourier held that every function6 could be represented by a trigonometric
series.

The question of the day and for sometime to come was this: Classify
the functions for which the Fourier series converge. This simple
question had a profound impact on the development of analysis and
literally forced rigor upon the subject, first for the ideas of continuity,
then for the definition of the integral, and finally for the notion of set.
This in turn put mathematicians square up against infinity itself. This
is one of the more curious threads in the history of mathematics. A
relatively straight forward problem led to the creation of set theory,
functional analysis, and the rigorization of analysis. Below are listed a
few steps along the way.

� 1817 � Bolzano tried to prove what is now called the Intermediate
Value Theorem, but was stalled because no theory of the reals

6Bear in mind that Fourier viewed a function in a far narrower sense that we do today.
Basically, for Fourier a function was a piecewise continuous function, express by a Þnite number
of pieces of expressible analytic functions.
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existed. He needed the theorem that every bounded set has a least
upper bound.

� 1821 � Cauchy gives a nearly modern definition of limit and con-
tinuity, though he uses uniform continuity when he hypothesizes
pointwise continuity. He defined convergence and divergence of
series, and produced what is now known as the Cauchy conver-
gence criterion.

� 1823 � Cauchy gives the definition of integral in terms of the
limit of sums of rectangles. This makes Fourier�s use of integrals
more rigorous.

� 1829 � Dirichlet gives a condition on a function to have a con-
vergent Fourier series. (The function must be monotonic with a
finite number of jumps.) This condition, that the number of dis-
continuities the function can have is finite is due to the current
state of the theory of integrability. As an example of a function
that cannot be integrated, he produces the function

f(x) =
½
0 if x is rational
1 if x is irrational

sometimes called the �salt and pepper� function.

� 1831 � Carl Frederich Gauss (1777 - 1855) objected to using
infinity in, �I protest against the use of an infinite quantity as an
actual entity; this is never allowed in mathematics. The infinite is
only a manner of speaking, in which one properly speaks of limits
to which certain ratios can come as near as desired, while others
are permitted to increase without bound.�

� 1850 � Karl Weierstrass gives the modern δ, ² definition of con-
tinuity, discovers and applies uniform convergence and gave a
theory of irrational numbers (1860) as series of rationals. (For
example,

√
2 = 1 +

P∞
n=1(

1/2
n
)/n!.) Predecessors had defined ir-

rationals, if they did at all, as limits of rationals. However, Cantor
observed irrationals must already exist in order for them to be a
limit of sequences. Using the method of condensation of singular-
ities, Weierstrass produces a continuous function that is nowhere
differentiable. This defeated decades of research to prove that all
continuous functions must be differentiable, except at perhaps a
set of exceptional points.
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� 1854 � Georg Friedrich Bernhard Riemann (1826-1866), Dirich-
let�s student, gives a more general definition of integral, the Rie-
mann integral, thought by many to be the most general possible.
He gave an example of a function with an infinite number of dis-
continuities that has an integral. Riemann posed many problems
about Fourier series including those that led to set theory.

� 1858 � Dedekind gives a theory of irrational numbers based on
cuts, now called Dedekind cuts.

� Cauchy and Weierstrass eliminate infinitesimals and infinite values
and replaced them by infinite processes and conditions � very
Eudoxian to say the least.

5 Infinity and Georg Cantor

Georg Cantor (1845 - 1918) was a student of Dedekind and inherited
from him the problem of establishing the class of functions which has
a converging Fourier series. Following his teacher, he began to study
families of functions having convergence Fourier series as classified
by their exceptional points. That is, following even the first ideas
of convergence, Cantor expanded the number of exceptional points a
function may have and still have a converging Fourier series � except
at those points. His first attempt in 1872 allowed for an infinite number
of exceptional points answering a question of Riemann.

Here are the details. Given an infinite set of points S. Define the
derived of S ,S 0, to be the set of limit points of S. Define S 00 to be the
derived set of S 0, also called the second derived set of S, and so on.
Cantor was able to show that if the trigonometric series

0 =
∞X
n=1

an cosnx+ bn sinnx

converges to zero except at a set of points which has a finite kth derived
set, for some (finite) k, then an = bn = 0, n = 1, 2, . . .. In this paper
he also showed the existence of such sets for every n.
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Cantor most certainly was aware that the process of derivations could
be carried out indefinitely. Use the notation S(n) to be the nth derived
set of S. Then S(n+1) = (S(n))0, the derived set of Sn. Defining in this
way S(∞) to be those points in S(n) for every finite n, we can continue
to apply the derive operation. Thus we get the following sets of points:

S(0), S(1), . . . , S(∞), S(∞+1), . . . , S(∞·2), . . .
S(∞·4), . . . , S(∞

2), . . . , S(∞
∞), . . .

The number ∞ appears naturally in this context. So also do numbers
∞ + 1, ∞ + 2 and so on. The root of these infinite numbers was the
attempt to solve a problem of analysis.

However, Cantor now devoted his time to the set theoretic aspects of
his new endeavor, abandoning somewhat the underlying Fourier series
problems. He first devoted his time to distinguishing the sets of rationals
and reals. In 1874, he established that the set of algebraic numbers7
can be put into one-to-one correspondence with the natural numbers.8
But the set of real numbers cannot be put into such a correspondence.
We show the simpler

Theorem. The set of rationals is one-to-one correspondence with the
natural numbers.

Proof #1. Let rm,n = m
n

be a rational number represented in reduced
form. Define the relation

rm,n → 2m 3n

This gives the correspondence of the rationals to a subset of the natural
numbers, and hence to the natural numbers.

Proof #2.9 (Arrange all the rationals in a table as shown below. Now
count the

7For our context, the algebraic numbers are all the real zeros of Þnite polynomials having
integer coefficients.

8Such sets are nowadays called denumerable or countable.
9This proof is the more common and simpler to understand
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1,       2 ,      3 ,     4,      5 , . ..1/ 2,   2 /2 ,  3/ 2,   4 /2 ,  5/ 2 ,...1/ 3,   2 /3 ,  3/ 3,   4 /3 ,  5/ 3,  ...1/ 4,   2 /4 ,  3/ 4,   4 /4 ,  5/ 4,  ...1/ 5,   2 /5 ,  3/ 5,   4 /5 ,  5/ 5,  ...  

1,      2,      3,     4,     5, ...
1/2,  2/2,  3/2,  4/2,  5/2 ,...
1/3,  2/3,  3/3,  4/3,  5/3, ...
1/4,  2/4,  3/4,  4/4,  5/4, ...
1/5,  2/5,  3/5,  4/5,  5/5, ... 

numbers as shown by the arrows. This puts the rationals into corre-
spondence with the natural numbers. As you may note, there is some
duplication of the rationals. So to finish, simply remove the duplicates.
Alternatively, build the table with the rationals already in lowest order.

The proof for algebraic numbers is only slightly more complicated.

The proof of the other result, that the real numbers cannot be put into
such a correspondence invoked a new and clever argument. Called
Cantor�s diagonal method, it has been successfully applied to many
ends.

Theorem. The set of reals cannot be put into one-to-one correspon-
dence with the natural numbers.

First Proof. We give here the 1891 proof. Restrict to the subset of
reals in the interval (0, 1). Supposing they are denumerable as the set
{an}∞n=1, we write their decimal expansions as follows:

a1 = 0 . d1,1 d1,2 d1,3 . . .

a2 = 0 . d2,1 d2,2 d2,3 . . .

a3 = 0 . d3,1 d3,2 d3,3 . . .
...

where the d�s are digits 0 - 9. Now define the number

a = 0 . d1 d2 d3 . . .

by selecting d1 6= d1,1, d2 6= d2,2, d3 6= d3,3, . . . . This gives a number
not in the set {an}∞n=1, and the result is proved.

Second Proof. This proof, which appeared in 1874, is not as well
known. We show that for any sequence v1, v2, . . . of reals there is a
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number that is not in the sequence in any interval of real numbers (a, b).
First, let a1 and b1 be the first members of the sequence in (a, b) with
a1 < b1. Let a2 and b2 be the first members of the sequence in (a1, b1)
with a2 < b2, and so on. Thus a1, a2, . . . is an increasing sequence,
and b1, b2, . . . is a decreasing sequence. There are three cases. If the
sequences are finite, then any number inside the last chosen interval
satisfies the requirement. Suppose now the sequences are infinite and
they converge to limits, a∞ and b∞, respectively. If they are equal,
then this value satisfies the requirement. If not, any value in the open
interval (a∞, b∞) does so.

Seeking undenumerable sets, Cantor considered topological notions for
his derived sets. We say a set S ⊂ (a, b) is dense if S 0 ⊃ (a, b). We
say S is closed if S0 ∩S = S 0. We say S is isolated if S0 = ∅. Finally,
we say S is perfect if S 0 = S. Remarkably, Cantor showed that perfect
sets must be uncountable. One of the most famous perfect sets is so-
called the middle thirds set defined as the residual of the open interval
(0, 1) by first removing the middle third (i.e. (1

3
, 2
3
)). Next remove the

middle thirds of the two subintervals remaining and the middle thirds
of the four remaining subintervals after that, and so on. This set is
one of the first examples of an uncountable Lebesgue measurable set
of measure zero that mathematics graduate students learn.

At this point he was in possession of two orders of infinity, countable
and uncountable infinity. Being unable to determine an infinity in be-
tween, he gave a proof that every set of points on the line could be put
in one-to-one correspondence with either the natural numbers or reals.
His proof was incorrect, but his quest is known today and is called the
continuum hypothesis. The problem is open today and is complicated.
In 1938, Kurt Gödel proved that the continuum hypothesis cannot be
disproved on the basis of the set-theoretic principles we accept today.
Moreover, in 1963, Paul Cohen established that it cannot be proved
within these principles. This means that the continuum hypothesis is
undecidable.

Cantor was not without detractors. Though his methods were enthusi-
astically received by some mathematicians, his former teacher Leopold
Kronecker believed that all of mathematics should be based on the
natural numbers. This may be called finitism. He also believed that
mathematics should be constructed, and this is called constructivism.
He soundly rejected Cantor�s new methods, privately and publicly. As a
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journal editor, Kronecker may have delayed the publication of Cantor�s
work.

By 1879 Cantor was in possession of powers of infinity, defining
two sets to be of the same power if they can be placed into one-to-
one correspondence. Using his diagonalization method, he was able to
demonstrate orders or powers of infinity of every order. Here is how to
exhibit a set of higher power than that of the reals. Let F be the set
of real-valued functions defined on the reals. Assume that this class of
functions has the same power as the reals. Then they can be counted as
fy(x), where both x and y range over the reals. Define a new function
f(x) such that

f(x) 6= fx(x)
for each real x. This function cannot be in the original set F . In
turn, this method can be applied recursively to obtain higher and higher
powers of infinity. There is another connection with subsets of sets.
Indeed, in the argument above the subset of F consisting of functions
assuming only the values 0 and 1 could have been used. In such a
way it is possible to see that we are looking at the set of all subsets of
the reals. A subset corresponding to a particular function is the set of
values for which it has the value 1. Conversely, any subset generates a
function according to the same rule.

In all this, infinity is now a number in its own right, though it is linked
with counting ideas and relations to sets of sets. The term power gave
us the expression power set, or set of subsets of a given set. For a
finite set with n elements, the set of all subsets has size 2n. However,
the power of a set is an attribute of a set akin to the cardinality of a
set. Two sets have the same power if they can be put in one-to-one
correspondence.

In about 1882, Cantor introduced a new infinity, distinguishing car-
dinality from order, cardinal numbers from ordinal numbers. (i.e. one,
two three from first, second, third). He would say that (a1, a2, . . .)
and (b2, b3, . . . , b1) have the same cardinality or power, but their order
is different. The first has order ω while the second has order ω + 1.
For finite sets, there is only one order that can be given, even though
elements can be transposed. Therefore, ordinal and cardinal numbers
can be identified.

Using a method similar to the second proof above, Cantor showed how
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to produce a set with power greater than the natural numbers, namely,
the set of all ordinal numbers of the power of the natural numbers.
From this, he went on to construct the power set of the set of ordinals,
and so on generating higher and higher powers. Now, to make contact
with the power of the real numbers, Cantor made the assumption that
the reals were well-ordered, which is defined below. From this, he
established that the power (cardinality) of the real numbers is less than,
equal to or greater than each of the new powers, but not which of them
it is.

Notation: By 1895 Cantor defined cardinal exponentiation. Using the
term ℵ0 (aleph-null) to denote the cardinality of the natural numbers,
he defined 2ℵ0 for the cardinality of the reals. With ℵ1 (and more
generally ℵω denoting the ωth cardinal) the next larger cardinal than
ℵ0, the continuum hypothesis is written as 2ℵ0 = ℵ1.

Cantor and others produced similar examples of a special category
of nowhere-dense sets as an application arose of these ideas. First, a
nowhere dense set S is a set for which the complement of its closure
is dense, i.e. �S̄ is dense. The set of binary fractions { 1

2n
}∞1 and

the Cantor middle thirds set are nowhere dense, but the rationals are
dense. The special new category consists of those that are �fat� in the
following way: Every finite covering of the set by intervals should have
total length greater than some given number, say 1. It becomes natural
to say that such sets have content, and the content of the particular
nowhere dense set under consideration is the infimum of the total length
of all finite coverings. The idea of content was to play a major role in
the development of the modern integral, notably the Jordan completion
to the Riemann-Cauchy integral and ultimately the Lebesgue integral.
So, we see here, sets and infinity now giving rise to new ideas for
analysis. And note that the Fourier series problem that served as the
root of these investigations would find its ultimate solution within the
context of the modern integral.

At this point we have come full circle. The problem created the
solution. In 1873, the French mathematician Paul du Bois Reymond
(1831 - 1889) discovered a continuous function for which its Fourier
series diverged at a single point, solving a long standing open problem.
That this was the tip of the iceberg on divergence of Fourier series is
illustrated below by three theorems. These results are essentially the
current best possible pointwise results for Fourier series. We first need
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the definition: A set E ⊂ R is said to have measure zero if for every
² > 0 there exists a finite set of intervals I1, I2, . . . , Ik on for which

1. E ⊂ ∪ki=1Ii
2.
Pk
i=1 |Ii| < ², where for any interval I, |I| is the length of I .

(Of course, k and the intervals I1, I2, . . . , Ik depend on the set E and
on ².)

Theorem. (L. Carleson, Acta Mathematica, 116, p.135-157, 1964.)
If f(x) is continuous on [0, π] (or even Riemann integrable) then
Sm(f, x) → f(x) for all t /∈ E, where E is some set of measure
zero.

Here
Sm(f, x) =

a0
2
+

mX
n=1

an cosnx+ bn sinnx

In relation to Cantor�s theorem, it is easy to show that sets E for which
the kth derived set is finite must have measure zero. Corresponding to
Carleson�s theorem, we have the

Theorem.(Kahane and Katznelson.) If E is a set of measure zero then
there exists a continuous function f(x) on [0, π] for which

lim
m→∞ supSm(f, x) =∞

for all x ∈ E.

These results compliment other counterintuitive results such as

Theorem. (A. 2N. Kolmogorov) There exists a Lebesgue integrable
function F (x) whose Fourier series diverges at every point.

See Zygmund [1959] and Katznelson [1976] for further details.

6 The Theory of Sets

According to Cantor, a set M is �a collection into a whole, of definite,
well distinguished objects (called elements) of M of our perception
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and thought.� For example the numbers {1, 2, , . . . , 10} constitute a
set. So also does the set of primes between 1 and 1000. The order of
the elements of the set is unimportant. Thus, the sets {1, 2, , 3} and
{3, 1, , 2} are the same. Therefore, two sets M and N are the same if
they have the same number of elements.

This view was emphasized by Gottlob Frege (1848 - 1926), in his
development of set theory, who took the approach that infinite collec-
tions cannot be counted. He sought a theory that is independent of
counting. Thus, he took one-to-one correspondences to be basic, not
well-orderings. Intrinsic to this is the notion of cardinality.

Definition. A set M is said to be equivalent to a set N , in symbols:
M ∼ N , if it is possible to make the elements of N correspond to the
elements of M in a one-to-one manner.

This is of course an equivalence relation: (1) M ∼ M ; (2) M ∼ N
implies N ∼M ; (3) if M ∼ N and N ∼ P then M ∼ P .

Definition. By a cardinal number of a power m we mean an arbitrary
representative M of a class of mutually equivalent sets. The cardinal
number of the power of a set M will also be denoted by |M |.
At this point we have the following cardinals:

0, 1, 2, . . . ,ℵ0, ℵ1, ℵ2 , . . .
The latter three are called the transfinite cardinals. We also know
how to construct more cardinals by taking the power set (the set of
all subsets) of any representative of a cardinal. Note that cardinals are
ordered by this

Definition. A set M is said to have a smaller cardinal number than
a set N , in symbols: |M | < |N |, if and only if M is equivalent to a
subset of N , but N is equivalent to no subset of M .

Of the transfinite cardinals, ℵ0 is the smallest. The continuum hy-
pothesis affirms that 2ℵ0 = ℵ1. We have shown that the cardinality of
all the functions on any interval (or uncountable set) is ℵ1. Can you
show that the cardinality of the continuous functions on any interval
has cardinality ℵ1 ? That there are infinitely many transfinite cardinals
follows from an argument similar to the diagonal argument above. We
include this statement as
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Theorem. For every setM , the set U(M) of all its subsets has a greater
cardinal number than M .

By assuming there is a largest cardinal, we bump into one of the
famous paradoxes of set theory, first formulated by Bertrand Russell
(1872 - 1970) in about 1901. Often called Cantor�s paradox it goes like
this: The class of classes can be no larger than the class of individuals,
since it is contained in the class of individuals. But the class of classes
is the class of all subclasses of the class of individuals, and so Cantor�s
diagonal argument shows it to be larger than the class of individuals.
Another paradox, formulated by both Russell and Ernst Zermelo (1871
- 1953), is this:

Theorem. A set M which contains each of its subsets m, m0, . . . as
elements, is an inconsistent set. (That is, it leads to contradictions.)

Proof. Consider those subsets m which do not contain themselves as
elements. Their totality is denoted by M0. Since M0 ⊂ M , we can
inquire if it contains itself. If so it must be a subset of some m that
does not contain itself. But m ⊂ M0 and this implies m does contain
itself, a contradiction. If not it must be a member of the original set
of those subsets m which do not contain themselves as elements, and
therefore is in M0.

Russell published several versions of this paradox. The barber para-
dox is the simplest: A barber in a certain town has stated that he will
cut the hair of all those persons and only those persons in the town who
do not cut their own hair. Does the barber cut his own hair? Paradoxes
of this type and the above paradox of size threatened early, intuitive set
theory. Note that this one does not involve infinity at all; often, it is
called a semantic paradox.

The other axioms of set theory as given by Zermelo follow:

1. Axiom of Extensionality: if, for the sets M and N , M ⊂ N and
N ⊂M , then M = N .

2. Axiom of Elementary Sets: There is a set with no elements, called
the empty set, and for any objects in M , there exist sets {a} and
{a, b}.

3. Axiom of Separation: If a propositional function P (x) is defi-
nite for a set M , then there is a set N containing precisely those
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elements x of M for which P (x) is true.

4. Power Set Axiom: If M is a set, then the power set (the set of all
subsets) U(M) of a set M is a set.

5. Axiom of Union: If M is a set, then the union of M is a set.

6. Axiom of Choice: If M is a disjoint union of nonempty sets, then
there is a subset N of the union of M which has exactly one
element in common with each member of M .

7. Axiom of Infinity: There is a set M containing the empty set and
such that for any object x, if x ∈M , then {x} ∈M .
Zermelo was never able to prove the consistency of the axioms and
was criticized for it.10 In 1930, he introduced a new system, now
called the Zermelo-Fraenkel set theory, by including the axiom to
ensure that the set

{Z, U(Z), U(U(Z)), . . .}
exists, where Z is the set of natural numbers. Without that set one
cannot prove the existence of ℵω, where, you recall, ω is the first
transfinite ordinal. Fraenkel introduced the replacement axiom.

8. Axiom of Replacement: The range of a function of a set is itself
a set.

This axiom solves the problem of ensuring the existence of {Z,U(Z), U(U(Z)), . . .}.
Returning to the paradoxes, there were two types that threatened early

intuitive set theory. First there were the paradoxes of size: (1a) We
can always construct a set with larger cardinality, and (1b) if there is a
largest set (i.e. the set of all sets), we can construct a larger one by the
diagonalization argument.

The other type was of the Russellian type. These paradoxes occur
when there is a hidden parameter whose value changes during the rea-
soning. For example, in a conversation between two people, one in
New York and one in Texas, the first can state the time is 8:00PM
and the other state the time is 7:00PM. Both are correct. So, is this a
10Indeed, Kurt Gödel (1906 - 1978) proved that the consistency could not be proved. Even

further, he proved that within any system that contains the axioms for the natural numbers
must have propositions that cannot be decided. He also was criticized for the axioms he chose
and didn�t choose.
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paradox? Certainly not, everyone knows of the two time zones. This
is the hidden parameter. We correct this by requiring that time zones
should be specified. So, the New Yorker will say it is 8:00PM EST,
and the Texan will say it is 7:00PM CST. There is now no possible
confusion.

Other Russellian type paradoxes are not as easy to resolve. Consider
the barber problem. Can the sentence, �there is a man who shaves
all and only the men that do not shave themselves,� be true? No, if
the barber is in the range of the quantifier, �all the men.� Yes, if not.
Restricting the quantifier is then the key to resolving such paradoxes.
In general, these paradoxes all have a type characterized as

{x | x /∈ x}
The usual chain of reasoning shows that this set must both be and not be
a member of itself; hence, a paradox. The fix to this state of affairs
is to introduce a type of comprehension principle, proposed in 1930
by Zermelo, that gives the following parametric form of the Russell
definition: for each set α

yα = {x ∈ α | x /∈ x}
Once this assumption is made the chain of reasoning toward paradox
is blocked. You see, we begin from the outset with a given set, well
founded or not. What the faux paradox now shows is that yα cannot be
a member of α. Moreover, from this we can conclude that there is no
�universal set�. If there were, then yα would have to be in it, but at the
same time cannot be in it, by the conclusion drawn about the sets yα.
In short, yα �diagonalizes� out of α. In regards to the barber paradox,
note now that the set of shavers must be defined before extracting those
that don�t shave themselves. The barber is diagonalized out, and the
paradox is avoided.

7 The Axiom of Choice

In 1904 Zermelo first formulated the axiom of choice as such in the
distinguished journal Mathematicsche Annalen, though it had been in
use for almost twenty years. Curiously, though it has been used many
times previously, it had not been formally stated as such. It was just part
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of the proof of the various results that employed it. For example Cantor
used it in 1887 to show any infinite set has a subset of cardinality ℵ0.
It was also used in topology, algebra, and analysis.11 In 1890 Giuseppe
Peano (1858 - 1932) argued that one cannot apply a law that selects
a member of a class from each of many classes an infinite number of
times. After the appearance of Zermelo�s paper, the very next issue
contained detractions by no less than Emile Borel (1871 - 1956) and
Felix Bernstein (1878 - 1956) in Mathematicsche Annalen. Detractions
were also submitted to the Bulletin del la Société Mathématique de
France though out 1905 by Henri Lebesgue (1875 - 1941) and René
Baire (1874 - 1932). The kernel of their argument was this: Unless
a definite law specified which element was chosen from each set, no
real choice has been made and the new set was not really formed.
Specifically, E. Borel referred to the Axiom of Choice as a lawless
choice which when used is an act of faith, and that is beyond the pale
of mathematics. Defenders did not see the need for a law of choice.
The choices are determined, they argued, simply because one thinks of
them as determined. Jacques Hadamard (1865 - 1963) was Zermelo�s
staunchest supporter arguing the practicality of its application in making
progress.

This is the state of affairs today. The axiom of choice is widely
used and with it, wide and varied results have been obtained. It will
no doubt continue to be used until such time as contradictions are
obtained. However, denying its validity leads to some rather unusual
consequences. For example, if one accept only the countable axiom
of choice, every (constructible) set of reals is measurable. Conversely,
assuming that every set is measurable leads to the denial of the axiom of
choice. Similarly, if one denies the continuum hypothesis by assuming
that 2ℵ0 = ℵ2, then every set of real numbers is measurable.

The Well Ordering Axiom, which was used for example by Cantor to
bring the reals into the realm of his other ordinals, was also widely used
during this time. A set if (linearly) ordered is there is a relation �<�
for which given a and B in M , it follows that a < b, b < a, or a = b
is true. The set is well ordered if every subset of M , no matter how it
is selected, has a least element. For example the natural numbers are
well ordered under the natural order, but the reals are not. The well
11For example, it was used to show the following theorem: Every bounded inÞnite set of

real numbers has a converging subsequence.
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ordering axiom states that a linear order exists for the reals. Zermelo,
to answer some of the criticisms, of the axiom of choice gave a proof of
the well-ordering of the reals that used the axiom of choice. Moreover,
he proved the two axioms are equivalent.

Question: Can you prove that every infinite set has a countable subset
without the axiom of choice? Can you prove it with the axiom of choice
(or an equivalent)? Answers: no and yes. Whether you can prove it or
not, the point is you probably believe it can be done, or at the very least
should be possible. The axiom of choice allows this �natural fact.� Call
this its good side. That it has another side is indicated below.

We would be remiss to leave out one of the colossal paradoxes that
can be proved using the axiom of choice. The most remarkable of
these, discovered in 1924, is the Banach-Tarski paradox.12 Called a
paradox because of its remarkable conclusion, more properly it should
be called the Banach-Tarski theorem.

Theorem. (Banach-Tarski) Given two spheres, say, one of diameter
one meter (SA) and the other the size of the earth (SB), there are
decompositions of both into a finite number of pieces, say, {Ai}ni=1
and {Bi}ni=1 with ∪Ai = SA and ∪Bi = SB, for which Ai ∼= Bi,
i = 1, . . . , n.

(Congruence here means that one set can be transformed to the other
by a rigid rotation and a translation.) The rather technical proof is not
difficult, but is a bit long for this article.

Of the more intuition shattering consequences of this counterintuitive
theorem is that a bowling ball can be decomposed into a finite number
of pieces and reassembled as a sphere larger than and more massive than
the earth. You may argue that the principle of conservation of mass is
violated, and therefore something is definitely amiss. However, it can
be shown that these decompositions are not measurable in the sense of
Lebesgue, and therefore they have no measurable mass. Consequently,
one�s intuition is shattered further after acknowledging the existence
of �clumps� of matter that cannot have mass. The axiom of choice is
12Stefan Banach (1892 - 1945) developed the theory of closed linear normed spaces, now

called Banach spaces. These spaces form the foundation of much of modern analysis and
numerical analysis. Alfred Tarski ( 1901 - 1983) was an outstanding logician that analyzed
the semantic aspects of logic and was instrumental in providing a framework in which many

paradoxes can be removed. The foremost of these paradoxes, The Liar, was known even to
Aristotle and its study is an active part of contemporary modern set theory.�
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a marvelous tool, and in this context, could lead to an entirely new
cosmology. The only limit is one�s imagination.

8 How Big is InÞnity?

So far we have seen the cardinal numbers 0, 1, 2, . . . , ℵ0,ℵ1, . . . , ℵω.
Of course we can construct even larger cardinals by employing the
power set construction. Is that the end of the line? Constructing power
set after power set. In this very short section we consider whether there
may be even larger cardinals, inaccessible from power set realization.
It can be shown that for each set M of cardinals there is a smallest
cardinal succeeding all members of M . Denote this cardinal by supM .
For example ℵ0 = sum{0, 1, 2, . . .} and ℵ1 = sup{ℵ0}. A cardinal
A which is not 0 is said to be inaccessible if

1. for every set B of cardinals such that |B| < A
sup B < A

2. if C < A for C ∈ A 2C < A

Certainly ℵ0 is inaccessible in this definition. But are there others? In
fact, it has been shown that the postulate that there are no other such
inaccessible cardinals is consistent with the axioms of the standard
Zermelo-Fraenkel set theory. Because of this Tarski introduced a very
powerful axiom asserting the existence of inaccessible cardinals. Called
the axiom for inaccessible sets it reads as

For every setN there is a setM with the following properties:

1. N is equivalent to a subset of M ;
2. {A : A ⊂M & A < M} is equivalent to M ;
3. there is no subset P ⊂M with |P | < |M | such that the

power set of P is equivalent to M .

Tarski13 has shown that the cardinal number of a set M is infinite
and inaccessible if and only if M satisfies (2) and (3) above. This
13See Suppes or Rotman
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axiom is so strong that its adoption implies that the axiom of the power
set, the axiom of selection of subsets, the axiom of infinity, and the
axiom of choice can all be omitted from the original system of axioms.
Inaccessible cardinals are infinities beyond infinity in every sense of
constructibility of the alephs. It is remarkable that language allows
its description. Such sets may well be beyond the comprehension of
anyone as objects of true consideration.

9 Conclusion

In some ways, the paradoxes and overall lack of agreement on basic
principles in set theory can be seen as parallel to the paradoxes and
overall lack of agreement on basic principles in the early days of cal-
culus or noneuclidean geometry. Parallel to that, no doubt there were
many paradoxes and overall lack of agreement of basic principles in the
fledgling subject of geometry more than two thousand years earlier. It
seems that by making various decisions about infinity via its �agents�,
the axiom of choice and the well ordering axiom, different systems of
mathematics result. Therefore, the original absolute axiomatic model
of Euclidean geometry within which all propositions can be resolved
and that all of science has tried to emulate, is gone forever. Infinity
and these trappings of set theory so very much needed to advance the
early and modern mathematical theories, has served up a second dish,
the demise of certainty.

Will the issues of infinity ever be resolved to the satisfaction of logi-
cians and mathematicians? Like the limit, the understanding of which
was finally assimilated after two millenia, a working definition of in-
finity satisfactory to all practitioners will probably percolate out. For
most of us that point has already been achieved.
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