Number Theory Section Summary: 11.2

Fermat's Last Theorem

1. Summary

So we left things at all solutions of

$$x^2 + y^2 = z^2 (1)$$

which can be written as

$$(2st)^2 + (s^2 - t^2)^2 = (s^2 + t^2)^2$$

for integers s > t > 0 such that gcd(s,t) = 1 with $s \not\equiv t \pmod{2}$. In particular, there ARE integer solutions of that equation (1); so what about

$$x^n + y^n = z^n?$$

One observation is that, if n = pq, then

$$(x^p)^q + (y^p)^q = (z^p)^q$$

and

$$(x^q)^p + (y^q)^p = (z^q)^p$$

so that we simultaneously have solutions for all powers which are factors of n. Thus it suffices to ask if we can solve

$$x^p + y^p = z^p$$

for primes p: if we can't solve it for the prime factors of n, then we can't solve it for n itself.

Since we CAN find solutions for p=2, it's certainly possible that we have solutions for $n=2^k$, for $k\geq 2$. Fermat, however, took care of that....

Andrew Wiles recently (1994) proved that no solutions in integers exist for any power n greater than 2. In this section, we see how Fermat (who professed to have a proof of this theorem) solved the case of n = 4.

2. Theorems

Theorem 11.3: The Diophantine equation $x^4 + y^4 = z^2$ has no solution in the positive integers x, y, and z.

Proof: by Fermat's method of "infinite descent": one obtains from a triple a strictly smaller triple, and so on *ad infinitum*; but the positive integers cannot be reduced *ad infinitum* – contradiction!

Corollary: The equation $x^4 + y^4 = z^4$ has no solution in the positive integers x, y, and z.

Corollary: The equation $x^{4k} + y^{4k} = z^{4k}$ has no solution in the positive integers x, y, and z.

Hence, the only exponents of interest left to prove are odd primes....

Theorem 11.4: The Diophantine equation $x^4 - y^4 = z^2$ has no solution in the positive integers x, y, and z.

3. Properties/Tricks/Hints/Etc.

• Fermat (1637) writes

"It is impossible to write a cube as a sum of two cubes, a fourth power as the sum of two fourth powers, and, in general, any power beyond the second as a sum of two similar powers. For this, I have discovered a truly wonderful proof, but the margin is too small to contain it."

Fermat proved the case n = 4, and hence n = 4k.

- Euler (1770) proved the result for the case p = 3;
- Dirichlet and Legendre (1825) independently proved the case p = 5;
- Lamé (1829) proved the case p = 7;

- Kummer (mid 1800s) proved the result for a large **class** of primes p (called the *regular primes*);
- Faltings (1983) proved that all powers n > 2 could have only finitely many triples as solutions; and
- Andrew Wiles (1994) proved the whole enchilada....

Proof of 11.3: (by contradiction)

X4 + y4 = 22 has no solon in the positive
integer.

Arrume that I a soln. in pos. integers (x, y, 2). Choose a soln. with the minimal value of I (there must be one by well-ordering).

Claim: gcd(x,y)=1. Assume not:

gcd(x,y)=d>1. The d|z=7 we could have

factored out a term involving d:

 $(dx,)^{4} + (dy,)^{4} = d^{4}(x,^{4} + y,^{4}) = z^{2} = >$

 $d^{2}(z : z = d^{2}z, =)$ $x_{1}^{4} + y_{1}^{4} = z_{1}^{2};$

but z, < Z, which contradicts the choice of z as minimal. So ged (x,y) = 1.

Rewrite $x^4 + y^4 = z^2$ as $(x^2)^2 + (y^2)^2 = z^2$

i.e. (x2, y2, 2) ,, = Pytragorean triple - isit promitive? Is ged (x2, y2, 2)=1? ged (x,y)=1=> ged (x2,y2)=1=) gcd(x2,72,2)=1. So this triple is prinitive, the can do the "s-t" 12:~; $x^{2}=2st$ $y^{2}=s^{2}-t^{2}$ $z=s^{2}+t^{2}$ where $z=s^{2}+t^{2}$ $z=s^{2}+t^{2}$ $z=s^{2}+t^{2}$ Which of stt is even? Well, y is old, so y2,5 add: y=1.0-3 (mod 4) => y2=1 (mod 4) Assume 5 is even! $y^{2} = 5^{2} - t^{2} = 0 - 1 \pmod{4}$ = -1 (m.d. 1) Contradiction. Have + is eva: t = 2r Tr. x2= 2st = 2.5.2r = 45~ $\left(\frac{x}{z}\right)^2 = 5. \Gamma$ If gcd(s,r)=1, ten we can involve lenne 2 from §11.1. gcd(s,t) = gcd(s,2r) = 1

gcd (5,1)=1. So we can invoke lenne ?:

Back to y= 52-t2, or

 $t^{2} + y^{2} = 5^{2}$

(which is primitive since gcd(t,s)=1). So let & me the "s-t" truk again;

t = 2uv = 2r $\therefore uv = r = \omega^{2}$

v de relatively prime, so that who vare squares by lenne ?;

u = x, 2 v = y, 2

50 (x, y, z,) also solve the original equation; the problem is that

Z, $\leq z_1^2 = 5 < 5^2 < 5^2 + t^2 = 2$ Contradicty the choice of z = asMinimal.

1. \$ 50 las of x4+ y4 = 22

in the positive integers.

Suppose 7 a voln. in the pus. integer to

$$X^{4} + y^{4} = 2^{4} = (z^{2})^{2}$$

$$+2i - we here = color to$$

$$X^{4} + y^{4} = \omega^{2}$$

#4 1247 a. x2+ y2= 22-/

x2 - y2 = W2-1

x= 2n2 n y= 2n n7/

has infinitely many

Sol~s. X, y, Z, + w.

 $z = 2n^{2} + 1$ $\omega = 2n^{2} - 1$

C. X2+ y2= 22+1 x 2- y 2 = W2+1

Z= 4~2 (2~2+1)

w= 4n2(2n2-1)

b. $x^2 + y^2 = z^2$ $x^2 - y^2 = w^2$ $2x^2 = z^2 + w^2$ $2x = z^2 + w^2$

 $(x^{2}+y^{2})(x^{2}-y^{2}) = x^{4}-y^{4} = z^{2}\omega^{2}$ $= (z\omega)^{2}$

which has no solns in the pos, integes.