Number Theory Section Summary: 4.1-2 The Theory of Congruences

1. Summary

Carl (or Karl) Friedrich Gauss, prince of mathematicians, thought that "Mathematics is the queen of the sciences and number-theory the queen of mathematics." His *Disquisitiones Arithmeticae* was the book Dirichlet carried about like the Bible. This notion of **congruence** appears in the first chapter....

You're probably already familiar with modular arithmetic: this is the generalization of it. On the clock, 13 and 1 are the same thing (if we ignore pm and am -25 and 1 work if you don't want to ignore am and pm!).

2. Definitions

Definition 4.1: Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo n, symbolized by

$$a \equiv b \pmod{n}$$

if n divides a - b; that is, provided a - b = kn for some integer k.

complete set of residues: a collection of n integers a_1, a_2, \ldots, a_n forms a complete set of residues modulo n if every integer is congruent modulo n to one and only one of the collection. (For those of you who've had linear algebra, you can think of the collection as a "basis" for all integers with respect to the operation of congruence).

3. Theorems

Theorem 4.1: For arbitrary integers a and b, $a \equiv b \pmod{n}$ if and only if a and b leave the same nonnegative remainder when divided by n.

Theorem 4.2: Let n > 1 be fixed and a, b, c, and d be arbitrary integers. Then the following properties hold:

- (a) $a \equiv a \pmod{n}$
- (b) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.
- (c) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.
- (d) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$, and $ac \equiv bd \pmod{n}$.
- (e) If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$, and $ac \equiv bc \pmod{n}$.
- (f) If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any positive integer k.

Note that the converse of Theorem 4.2(f) is false: for example

$$2^2 \equiv 4^2 \pmod{4}$$
 but $2 \not\equiv 4 \pmod{4}$

Half of the converse of Theorem 4.2(e) is also false, as indicated in Theorem 4.3:

Theorem 4.3: If $ca \equiv cb \pmod{n}$, then $a \equiv b \pmod{n/d}$, where $d = \gcd(c, n)$.

Cond trings happen when gcd (c,n)=1: we can cancel i's witz joyful abandon!

Corollary 1: If $ca \equiv cb \pmod{n}$ and gcd(c, n) = 1, then $a \equiv b \pmod{n}$.

Corollary 2: If $ca \equiv cb \pmod{p}$ (p prime), and p does not divide c, then $a \equiv b \pmod{p}$.

Unfortunately we cannot simply cancel without thought: for example, you can check that

$$2 \cdot 6 \equiv 2 \cdot 12 \pmod{12}$$

but that

$$6 \not\equiv 12 \pmod{12}$$

In fact, however, it is true that

$$6 \equiv 12 \pmod{6}$$

4. Properties/Tricks/Hints/Etc.

Because all integers are congruent modulo 1, we generally assume that in a formula mod n, n > 1.

Note that $ab \equiv 0 \pmod{n}$ does not imply that a or b is $0 \pmod{n}$: for example $3 \cdot 5 \equiv 0 \pmod{15}$ but neither 5 nor 3 is $0 \pmod{15}$. What we can say is that, if $ab \equiv 0 \pmod{n}$ and $\gcd(a, n) = 1$, then $b \equiv 0 \pmod{n}$.