Number Theory Section Summary: 6.1

Number-Theoretic Functions

1. Summary

We encounter two interesting number-theoretic functions, τ and σ , and discover an interesting relationship between these and the prime factorization of a number.

The concept of a multiplicative function is also introduced, which will prove useful (now and later on).

2. Definitions

2 - tan J - Sigma

Number-theoretic function: any function whose domain is the set of natural numbers (and whose range is generally also in \mathbb{N}).

Definition 6.1: Given a positive integer n, let $\tau(n)$ denote the number of positive divisors of n, and $\sigma(n)$ denote the sum of those divisors.

The notation

$$\sum_{d|n} f(d)$$

means "sum the values of f as d runs over the divisors of n". Given that, then

$$\tau(n) = \sum_{d|n} 1 - \text{counting the division}$$

$$\sigma(n) = \sum_{d|n} d$$
 adds up the division

and

$$\sigma(n) = \sum_{d|n} d$$
 and in the divisors

Example: Evaluate $\tau(24)$ and $\sigma(24)$.

Example: Evaluate
$$\tau(240)$$
 and $\sigma(240)$.

1): $\tau(1) = \tau(240) = \tau(240) = \tau(240)$.

2, 30, 40, 48, 40, 80, 120

 $\tau(240) = 20$
 $\tau(240) = 744$

Example: : What are $\tau(p)$ and $\sigma(p)$ when p is prime?

$$T(\rho) = 2$$

$$\sigma(\rho) = \rho + 1$$

Example: #15, p. 110

$$n, n+2$$
 trin prints
$$S(n+2) = (n+2) + 1 \qquad S(n) = n+1$$

$$= (n+1) + 2$$

$$= S(n) + 2$$

$$Also Lolds for $n = 434$ $h = 8575$$$

Example: : How do $\tau(4)\tau(6)$ and $\tau(24)$ compare?

$$T(4)$$
 $T(4)$
=3 =4 $T(24)=9$
 $T(4)\cdot T(4)=12 \neq T(24)$ $T(3)=2$
 $T(21)=4=T(3)\cdot T(3)$
 $T(3)=2$ $T(3)=2$

Definition 6.2: A number-theoretic function is said to be **multiplicative** if

$$f(mn) = f(m)f(n)$$

whenever gcd(m, n) = 1.

Examples: f(n) = 1, $\mathbf{f}(n) = n$.

$$f(mn) = (= 1, 1)$$

$$= f(n) \cdot f(n)$$

$$g(mn) = mn = g(n) \cdot g(n)$$

By induction,

$$f(n_1 n_2 \cdots n_r) = f(n_1) f(n_2) \cdots f(n_r)$$

whenever the n_i are pairwise relatively prime. Hence, a multiplicative function is completely determined for n once its values on the prime powers of the factorization of n are known:

$$\int f(p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}) = f(p_1^{k_1})f(p_2^{k_2})\cdots f(p_r^{k_r})$$
3
$$\lim_{N \to \infty} f(p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}) = f(p_1^{k_1})f(p_2^{k_2})\cdots f(p_r^{k_r})$$
3

Example: #17, p. 110

$$f(x) = x^{k} \quad \text{is multiplicative}$$

$$f(nn) = (nn)^{k} = m^{k} n^{k} = f(n) \cdot f(n)$$

$$f(x) = 1 \quad \text{is multiplicative}$$

3. Theorems

Theorem 6.1 If $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ is the prime factorization of n > 1, then the positive divisors of n are precisely those integers of the form $d = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$, where $0 \le a_i \le k_i$ for i in $\{1, \ldots, r\}$.

Theorem 6.2 If $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ is the prime factorization of n > 1, then

(a)
$$\tau(n) = (k_1 + 1)(k_2 + 1) \cdots (k_r + 1)$$
 and

and (b)

$$\sigma(n) = \frac{p_1^{k_1+1} - 1}{p_1 - 1} \frac{p_2^{k_2+1} - 1}{p_2 - 1} \cdots \frac{p_r^{k_r+1} - 1}{p_r - 1}$$

The proof of the first is a counting argument, and the second uses a sum of a geometric series and a neat decomposition.

4

$$= \underbrace{\frac{(1+p_1+...+p_1^{k_1})}{p_1^{k_1+1}-1}}_{p_1^{k_1+1}-1} \underbrace{\frac{(1+p_2+...+p_2^{k_2})}{p_2^{k_2+1}-1}}_{p_2^{k_2+1}-1} \underbrace{\frac{(1+p_1+...+p_r^{k_r})}{p_r^{k_r+1}-1}}_{p_r^{k_r+1}-1}$$

$$\frac{5(240)}{5(240)} = \frac{2^{r}-1}{2-1} \cdot \frac{3^{2}-1}{3-1} \cdot \frac{5^{2}-1}{5-1} = 744$$
The notation
$$\prod_{i=1}^{r} f(i)$$

$$n! = \prod_{i=1}^{r} i$$

means "multiply the values of f as i runs over from 1 to r". Given that, then

$$\tau(n) = \prod_{i=1}^{r} (k_i + 1)$$

and

$$\sigma(n) = \prod_{i=1}^{r} \frac{p_i^{k_i+1} - 1}{p_i - 1}$$

Let's check for n = 240.

Theorem 6.3 The functions τ and σ are multiplicative functions.

Lemma If gcd(m, n) = 1, then the set of positive divisors of mn consists of all products d_1d_2 , where $d_1|m$, $d_2|n$, and $gcd(d_1, d_2) = 1$; furthermore these products are all distinct.

Theorem 6.4 If f is a multiplicative function and F is defined by

$$F(n) = \sum_{d|n} f(d)$$

then F is also multiplicative.

Corollary: the functions τ and σ are multiplicative functions.

$$T(n) = \sum_{d|n} \int_{0}^{\infty} \int_{0}^{\infty}$$

Denomination of The 6.4.

Given of multiplication to $F(n) = \sum f(d)$, to make a relationly prime, $(d, + ... + d_r) (di + ... - f_s) = (sum of) < 11 \text{ The divisors of minimum means of minimum$

$$F(mn) = \sum_{\substack{i \mid m \\ i \mid m}} f(a)$$

$$= \sum_{\substack{i \mid m \\ i \mid m}} f(a) \cdot f(a)$$

$$= \sum_{\substack{i \mid m \\ i \mid m}} f(a) \cdot f(a) \cdot f(a) \cdot f(a)$$

$$= \sum_{\substack{i \mid m \\ i \mid m}} f(a) \cdot f(a) \cdot f(a)$$

$$= \sum_{\substack{i \mid m \\ i \mid m}} f(a) \cdot f(a)$$

$$= \sum_{\substack{i \mid m \\ i \mid m}} f(a) \cdot f(a)$$