Number Theory Section Summary: 6.1
Number-Theoretic Functions

1. Summary

We encounter two interesting number-theoretic functions, 7 and o, and
discover an interesting relationship between these and the prime fac-
torization of a number.

The concept of a multiplicative function is also introduced, which will
prove useful (now and later on).
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Number-theoretic function: any function whose domain is the set
of natural numbers (and whose range is generally also in IN).

2. Definitions

Definition 6.1: Given a positive integer n, let 7(n) denote the number
of positive divisors of n, and o(n) denote the sum of those divisors.

The notation
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means “sum the values of f as d runs over the divisors of n”. Given
that, then
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Example: : Evaluate 7(24) and o(24).
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Example: : Evaluate 7(240) and o0(240). [\2 o= 27 7.¢
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Example: : What are 7(p) and o(p) when p is prime?
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Example: #15, p. 110
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Example: : How do 7(4)7(6) and 7(24) compare?
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Definition 6.2: A number-theoretic function is said to be multiplica-
tive if
f(mn) = f(m)f(n)

whenever ged(m,n) = 1.

Examples: f(n) = l,j(n) =n.
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By induction,
flmng---n.) = f(n1)f(n2)- - f(n,)

whenever the n; are pairwise relatively prime. Hence, a multiplicative
function is completely determined for n once its values on the prime
powers of the factorization of n are known:
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Example: #17, p. 110
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3. Theorems

Theorem 6.1 If n = pi'ph> ... p*r is the prime factorization of n > 1,
then the positive divisors of n are precisely those integers of the form
d=p*ps?---pi, where 0 < a; < k; for i in {1,...,7}.

Theorem 6.2 If n = phph? .. -pFr is the prime factorization of n > 1,
then —— T
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The proof of the first is a counting argument, and the second uses a
sum of a geometric series and a neat decomposition.
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The notation . ~
11 /() n! = 1 *)
i=1

Azt
means “multiply the values of f as ¢ runs over from 1 to r”. Given
that, then
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Let’s check for n = 240. /
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Theorem 6.3 The functions 7 and ¢ are multiplicative functions.

Lemma If ged(m,n) = 1, then the set of positive divisors of mn con-
sists of all products dyds, where dy|m, ds|n, and ged(dy,dy) = 1; fur-
thermore these products are all distinct.

Theorem 6.4 If f is a multiplicative function and F'is defined by
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then F is also multiplicative.

Corollary: the functions 7 and o are multiplicative functions.
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