
The Curl of a Vector Field. Stokes’ Theorem ex-
presses the integral of a vector fieldF around a closed
curve as a surface integral of another vector field,
called thecurl of F. This vector field is constructed
in the proof of the theorem. Once we have it, we in-
vent the notation∇ × F in order to remember how to
compute it. In this notation∇ stands for thevector
operator 〈

∂

∂x
,
∂

∂y
,
∂

∂z

〉
and expressions containing∇ are interpreted by first
pretending that it is an ordinary vector, so that vector
operations will introduce terms that abut a compo-
nent from the first factor with one from the second
factor. For numerical vectors, this is interpreted as
multiplication, but for∇ the interpretation is to let
the component of∇ operate on the component from
the other factor.

Thegradient also uses this interpretation of∇ to con-
struct a vector field from a scalar function. Thecurl
takes one vector field to another using a construction
modeled by the cross product.
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A related operation, called thedivergencewill be in-
troduced later.

Each of these acts as a derivative, and there is a version
of the fundamental theorem that evaluates an integral
of this derivative.

The fundamental theorem for line integrals says
that the difference of a scalar functionf (x, y, z) at
two points is the integral of∇ f (the gradient off )
alongany path joining the two points. From this it
follows that the integral of∇ f is independent of path
and that the integral of∇ f along any closed path is
zero.

Stokes’ theoremsays that the integral of a vector field
F(x, y, z) along a closed path is equal to the integral
of ∇ ×F (the curl ofF) alongany surface having the
given path as itspositively orientedboundary. From
this it follows that the integral of∇×F is zero on any
closed surface.

The divergence theorem(to be discussed later) re-
lates the integral of a vector field over a closed surface
to the integral of its divergence over the three dimen-
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sional region bounded by the surface. Although the
details are different, all three theorems have similar
statements.

Special second derivatives. It has already been noted
that

∇ × (∇ f ) = 0.

Formally, this is just the equality of mixed partials,
but it is tied to Stokes’ Theorem. IfF = ∇ f , the line
integral ofF along any curve is the difference of the
values of f at the endpoints. For a closed curve, this
is always zero. Stokes’ Theorem then says that the
surface integral of its curl is zero for every surface, so
it is not surprising that the curl itself is zero.

Stokes’ theorem also says that the integral of the curl
of a vector field over a closed surface is zero. If we try
to write a given vector fieldG as the curl of another
vector fieldF , we will meet anobstruction to com-
pleting the computation in the form of a combination
of derivatives of components ofG that must be zero.

Exercises 16.5. Find curl of the following vector
fields.
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#1. 〈xy, yz, zx〉.
#5. 〈ex siny,ex cosy, z〉.
#7.

〈
x
z ,

y
z ,

1
z

〉
.

For any of these whose curl is zero, express as a gra-
dient.

Finding a vector field from its curl . The first four
exercises of Section 16.8 have the form: use Stokes’
Theorem to evaluate∫∫

S

∇ × F dS.

In this form, there isn’t much to the exercise. This
way of stating the exercise givesF, so its curl need
never be computed since you must evaluate the line
integral in order to feel that you haveusedStokes’
Theorem. There is still something to be done: you
need to produce a parameterization of the positively
oriented boundary from a description of the surface,
but the statement of the exercise obscures its real con-
tent.
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It would be more interesting to start from a vector field
G that is of the formG = ∇ × F, and determineF.
Although this is more complicated than the process
for writing a conservative vector fieldF asF = ∇ f ,
it has a similar flavor.

We now describe a solution of the equation

∇ × F = G

for F whenG is given.

It is useful to simplify the problem as much as possible
before beginning. We know thatF is only defined up
to a term of the form∇ f , and there is no difficulty (in
principle, although it does require integration) finding
a function f for which f3(x, y, z) is any expression.
In particular, any solutionF could be replaced byF−
∇ f , where f3(x, y, z) is equal to the third component
of F. This means that we need only look for

F = 〈X,Y,0〉.

Let
G = 〈P, Q, R〉.
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Looking at the components of the curl, we have

−Yz = P

Xz = Q

Yx − Xy = R.

(∗)

If the first of the equations in(∗) is solved forY (up
to a function ofx andy), and this result put into the
third equation, we are left with the task of finding
X from its derivatives with respect toy andz. This
was exactly what we did in recognizing conservative
vector fields as gradients. The only requirement is that
the equationsXzy = Xyz must hold. These equations
are

Xzy = Qy

Xyz = Yxz− Rz.

Finally,
Yxz = Yzx = −Px,

so
Qy = −Px − Rz.
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Note that this condition depends only onG and not
on the particular choice ofY.

If this is satisfied, then we can findX for anyY, which
completes the determination ofF .

This shows thatG = 〈P, Q, R〉 satisfiesG = ∇ × F
if and only if Px + Qy + Rz = 0. This looks like it
should be denoted∇ ·G.

The whole story is a little more subtle. It is easy to
verify that∇×(∇ f ) = 0 and∇ ·(∇×F) = 0, but the
constructive part of these equivalences assumed that
the functions obtained in the solution weredefined
everywhere. For objects defined only in part of space,
the necessary condition my hold but it may not be
possible to perform the construction.

An example. From exercise 1 in Section 16.5, we
know that∇ · G = 0 whenG = 〈yz, xz, xy〉. The
first equation of(∗) becomesYz = −yz, so we take
Y = −yz2/2. This leaves

Xz = xz

Xy = −xy
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(sinceYx = 0). Then X = xz2/2 + f (x, y) and
f2(x, y) = −xy. The solution can be completed be-
cause the expression that is supposed to bef2(x, y)
really is independent ofz. Integrating this, gives
f (x, y) = −xy2/2 as one solution. Thus,

F = 1

2

〈
xz2− xy2,−yz2,0

〉
.

If we subtract∇(x2z2/4) = 〈
xz2/2,0, x2z/2

〉
from

this, we have the more symmetric solution

F = −1

2

〈
xy2, yz2, zx2

〉
.

Additional Exercises. Write the given vector fieldG
asG = ∇ × F, if possible.

(A) G = 〈0,0,1〉.
(B) G = 〈x2, y2,0

〉
.

(C) G = 〈0,0, xey〉.
Why is it called “curl” ? Consider the vector field

R = 〈−y, x,0〉
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that points in the positive direction along each circle
with center at the origin, with a magnitude propor-
tional to the radius. Such a motion corresponds to our
image ofpure rotation. An easy computation shows
that

∇ × R = 〈0,0,2〉,
identifying the axis of rotation everywhere. A phys-
ical model uses a small paddle-wheel moving in the
flow R. When the axis of the wheel is lined up with
thez-axis, the difference in speeds at the ends of the
paddle causes to paddle spin relative to coordinates
with fixed directions as its center of mass moves with
the flow. This behavior is seen throughout the flow
— not just near the center of rotation.

The rotation is detected in the vector fieldR itself by
forming the line integral ofR along closed curves.
Stokes’ theorem tells us that such an integral is given
by the integral of∇×R over a surface bounded by the
curve. In particular, the value of the integral may be
estimated by the product of the area of the surface and
the component of∇×R perpendicular to the surface.
For a small circle of radiusr , the area is proportional
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to r 2, so this effect is not overwhelming. However
when considered on a fixed scale, the magnitude of
the curl gives a noticeable rotation. To be free of such
effects, a vector field must have zero curl.
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