
Bezier Spline Sigmac Project Report

1

Given points , investigate graphically the range of motion of the
Bezier cubic possible depending on the choice of control point .

With the control points indicated, the starting and enfing point of the curve are guaranteed to be
and , and from , we can indicate that the derivative is one at the point .

Graphically, this means that the starting and ending point will be the same regardless of , and the
curve will always start by shooting up a little bit no matter what, from there though, almost anythign can
happen, as having control of the derivative at lets you make the function shoot as far up or down as
you wish after the initial hump, meaning an almost limitless amount of cubics are made possible,
shooting as high or as low as you wish, however always coming back to hit that point.

2

P ​ =0 (0, 0)P ​ =1 (1, 1)P ​ =3 (3, 0)
P ​2

(0, 0)
(3, 0) P ​1 (0, 0)

P ​3

P ​3

(3, 0)

Under what conditions will a Bezier cubic actually pass through one or both of the control points and
?

In order for the cubic to pass all the control points, they have to be lined up in a line as shown below,
this makes sence, as by doing so, you can match the derivatives and the points to the curve.

Assuming a fixed and , there seems to be an infinate amount of ways to make the polynomial
pass through controll point by simply adjusting , same vise evrsa, this also makes a lot of sence,
as even when freezing three points, you can make the polynomial cross through any point you desire by
manipulating the 4th, in which case you can make it just happen to pass through or .

3

the only way to create a closed curve was to set the two points right on top of each other From there, I
used the control points in order to smooth it out "as best as I can", as it is quickly apparent that with the
uneven distribution of points on the circle, it will be lopsided, looking more like a teardrop than a circle,
the most that can be done to minimize this is making and form a triangle with and , and
adjust the high until it looks as much like a circle as it can. Making a "nice" circle (Closed, curvy, and
could maybe fool a toddler)

P ​1

P ​2

P ​0 P ​3

P ​1 P2

P ​2 P ​3

P ​1 P ​2 P ​0 P ​3

4

For this fourth one, I decided to get a bit creative on the project to see if i could find a way to make my
own signature usin current technology!

To do so I decided to experiment with the idea of svg, a extremly efficient image type that takes
advantage of these awesome bezier curves.

Essentialy an svg is just a collection of control points, that all link up to make lines, which all together
group up to make an entire drawing, allowing you to store entire images as jsut mathematical equations!

Here is a demo shown below:

This image is actually an svg! But its also a bezier curve, and as we see here, the code for the svg
actually comprises simply of the 4 points that make up the control points!

Here is where things become awesome, I can actually take advantage of any svg painter to draw out a
signature, and then extract the control points from the svg files to reverse engineer the bezier curves!

https://medium.com/@bragg/cubic-bezier-curves-with-svg-paths-a326bb09616f
This article is really cool in explaining how it all works, and how you can even modifty the aspects of the
curve with tags written in the svg script!

https://medium.com/@bragg/cubic-bezier-curves-with-svg-paths-a326bb09616f

To grab the svg and control points, I simply draw out my signature as follows,

After conversion into svg, and extractions of the ponits, we are left with:

d="M 450 150 Q 435 240, 450 240 Q 570 180, 450 150 Q 480 240, 510 240 Q 510 180, 540 195 Q 570
240, 510 240 Q 525 180, 540 195 Q 570 255, 570 240 Q 555 210, 570 180 Q 615 195, 600 240 Q 600
180, 600 180 M 600 180 Q 645 180, 645 240 Q 660 180, 660 180 Q 660 240, 675 240 Q 690 195, 690
180 Q 690 285, 675 300 Q 675 210, 705 210 Q 720 210, 720 240 Q 720 210, 735 165 Q 750 210, 750
240 Q 750 195, 765 165 Q 780 225, 780 240 Q 780 210, 810 195 Q 780 210, 780 225 Q 795 240, 810
240 Q 810 210, 825 210 Q 855 225, 840 240 Q 780 240, 825 210 Q 855 225, 840 240 Q 840 330, 825
330 Q 795 285, 810 270 Q 870 225, 870 225 Q 855 225, 855 240 Q 900 240, 885 210 Q 855 210, 855
225 Q 900 255, 900 255 Q 930 240, 915 225 Q 900 210, 900 225 Q 870 240, 900 255 Q 945 225, 960
240 Q 960 240, 960 240"

Quite a lot! but it makes a lot of sence, in order to almost perfectly reproduce he picture above, we need
a ton of points and derivatives.

What also makes svg awesome is that it is both a way to display and write signatures! If you take this
code and replace the points bit with whatever points yuo would like, it will draw the curve associated
with your control points.

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink" width="960" height="360">

 <path d="PLACE CONTROL POINTS HERE" stroke="rgba(41, 173, 255, 1)"

fill="none" stroke-width="2" stroke-linejoin="round"/>

</svg>

I had a lot of fun with this project, as there was both the theoretical and applied side to making
everything work. In the theory department, I did a lot of research, starting with the splines chapter that
really interested me, I put a lot of time into also playing with desmos to grasp the full ability and
limitation of bezier curves (Which when combined with each other have almost no limit to what they can
draw, to the extent that we even made an image type that uses them to display pictures). After that I
branched into many different directions until I found an article explaining how svg's where made using

these same curves! With this idea in mind I proceeded to make everyones signatures by reverse
engineering the points from the svg file.

The easiest part was actually drawing out my signature and converting it into an svg file. The hard part
was discovering the SVG method, I was trying my best to use a desmos like system to manually enter
all the equations and create a signature, but found that method to be far too cumbersome, and after
wasting a lot of time on it, moved on to researching varius ways to create the signature, when i landed
on the svg method I ended up using.

The super duper hardest parth owever was most definitly controlling how the svg was made, when I
said "any editor" worked, that was a bit of an exaggeration, as many of them just wanted to give a list of
lines or points! In the end, it took me dozens of tries but I found one that got me most of the way there
(https://virtual-graph-paper.com/), and via some modification I turned the last few stubburn lines into
bezier curves, making it one beautiful line of control points!

SECRET PART 6!

But wait, what about AI! This part really got me thinking, what if I could jsut take any drawing, convert it
to svg with an image to svg converter, which utalizes AI to simplify an image to its key components,
doing this with an online screenshot I got this result:

I then plugged it into a converter to get this svg:

d="M 501.32 169.95 L 501.32 170.29 L 501.32 170.86 L 501.49 171.65 L 501.73 172.54 L 501.89
173.47 L 502.10 174.73 L 502.43 176.69 L 502.76 178.67 L 503.29 182.09 L 503.90 185.96 L 504.58
190.44 L 505.26 195.29 L 505.95 200.61 L 506.63 206.30 L 507.31 212.29 L 507.84 217.98 L 508.30
223.75 L 508.68 229.37 L 508.98 234.91 L 509.21 240.14 L 509.29 245.08 L 509.21 249.56 L 509.06
253.65 L 508.68 257.14 L 508.22 260.03 L 507.69 262.46.... (it continues for about 8 pages)"

But wait, these are not bezier curves! they are just lines, what a scam! This is when I thought up of
generative AI, and actually went to chatgpt, asking it to convert these lines into curves, just to see what
it did.

https://virtual-graph-paper.com/

And to my almost null expectations, it actually worked! It still took like four pages, but it was actually
able to recrate my image using bezier curves, resulting in this slightly jagged but still recognizable
signature:

Now for the unfortunate truth, as you may have noticed, I only actually did a D, and not my entire
signature, thats because even just one letter had almost 8 pages worth of lines to make it very high
resolution! When plugging any more into chatgpt it actually is simply too much for it to process, and
even after dozens of regenerations on the AI, it still was not able to convert anything more than 1 letter
at a time to bezier curves :(.

