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is estimated by the mean squared error MSE = Σri
2/(n – p – 1) for 

sample size n and p predictors.
One of the most versatile regression diagnostic methods is to plot 

the residuals ri against the predictors (xi, ri) and the predicted val-
ues (ŷi, ri) (Fig. 1). When noise assumptions are met, these plots 
should have zero mean with no local nonrandom trends and con-
stant spread (Fig. 1b). Trends indicate that the regression may be 
nonlinear and that terms such as polynomials (e.g., ΣγjX

2
j) may be 

required in the model for more accurate prediction; residuals will 
still have an overall zero average (Fig. 1b). The absolute values of 
the residuals can be plotted in the same way to assess the constant 
variance assumption.

Unless there are substantive reasons to expect a linear relationship 
between the response and predictor variables, linear regression pro-
vides a convenient approximation of the true relationship. However, 
if the residuals are large and show a systematic trend, there may be 
a lack of fit between the model and the true relationship (Fig. 1b). 
Whereas linear trends in the residual plots indicate influential data 
points that have pulled the fit away from the bulk of the data3, curva-
ture indicates nonlinear trends that have not been captured. Adding 
powers of the predictors as additional predictors in the model allows 
us to fit a polynomial, which can capture this curvature. If the poly-
nomial fit exhibits a significantly lower MSE, we might conclude that 
there are terms present that were not captured in the original model. 
For example, including an H2 term in the fit in Figure 1a decreases 
the MSE substantively from 1.32 to 0.86.

A formal test of lack of fit can be done when there are replicates 
at some combinations of the predictor values. The variability of the 

Figure 2 | Q–Q (normal probability) plots compare the differences between 
two distributions by showing how their quantiles differ. (a) Probability 
plots for n = 40 noise samples and their box plots drawn from three noise 
distributions. The distributions all have means of 0 and variance of 1.  
(b) Regression fits of n = 40 observations for the model W = –45 + 2H/3 + ε,  
where the samples from a are used for the noise. Variables and plot elements 
are defined as in Figure 1. (c) Q–Q plots and box plots for residuals in fits 
shown in b.
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Figure 1 | Residual plots are helpful in assessments of nonlinear trends and 
heteroscedasticity. (a) Fit and residual plot for linear regression of n = 40 
observations of weight (W) versus height (H) for three scenarios: the  
linear model W = –45 + 2H/3 + ε, where ε ~ N(0, 1) (left), the quadratic 
model W = –45 + 2H/3 – (H – 165)2/15 + ε, where ε ~ N(0, 1) (middle), and 
the linear model with heteroscedastic noise (nonconstant variance)  
ε ~ N(0, ((H – 160)/5)2). Shown are the fit line (black line), model (blue 
line), sample means (dotted lines), 95% confidence interval (dark gray area) 
and 95% prediction interval (light gray area). (b) Residual plots for the 
fit including box plots of residuals and smoothed nonparametric fits (solid 
lines). When assumptions are met, plots should have zero mean, constant 
spread and no global trends (left). Global trends with zero mean can indicate 
nonlinear terms (middle). Note that for the heteroscedastic noise scenario, 
the absolute value of residuals is shown with a mean of 0.68.
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POINTS OF SIGNIFICANCE

Regression diagnostics
Residual plots can be used to validate assumptions 
about the regression model.

So far in our discussion of linear regression, we have seen that the 
estimated regression coefficients and predicted values can be dif-
ficult to interpret1. When the predictors are correlated2, the magni-
tude and even the sign of the estimated regression coefficients can be 
highly variable, although the predicted values may be stable. When 
outliers are present3, both the estimated regression coefficients and 
the predicted values can be influenced. This month, we discuss 
diagnostics for the robustness of the estimates and of the statistical 
inference—that is, the t-tests, confidence intervals and prediction 
intervals that are computed on the basis of assumptions that the 
errors are additive, normal and independent and have zero mean 
and constant variance.

Recall that the linear regression model is Y = β0 + ΣβjXj + ε, where 
Y is the response variable, X = (X1, …, Xp) are the p predictor vari-
ables, (β0, …, βp) are the unknown population regression coefficients 
and ε is the error, which is normally distributed with zero mean and 
constant variance σ2 (often written as N(0, σ2)). The response and 
predicted value for the ith observation are yi and ŷi, respectively, and 
the difference between them is the residual ri = yi – ŷi. The variance 
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of the central limit theorem5 tells us that for large samples, tests and 
confidence intervals for the estimated regression coefficients and 
fitted values continue to be accurate with non-normal data as long as 
the errors are independent and identically distributed with constant 
variance. Here, the definition of ‘large’ depends on the nature of the 
non-normality. For example, errors that are closer to uniform on a 
fixed interval are ‘close’ to normal, but distributions that produce 
many outliers require large sample sizes. The prediction intervals 
rely critically on the normality assumption to determine the width 
and symmetry of the interval. Non-normality of the error distribu-
tion may completely disrupt the coverage of prediction intervals.

After it has been established from the residual plots that the resid-
uals have no nonlinear trends and constant variance, informal evalu-
ation of normality is often done using a histogram of the residuals or 
a Q–Q plot, also known as a normal probability plot (Fig. 2). These 
plots show the sorted values of the sample versus sorted values that 
would be expected if they were drawn from a normal distribution. 
Although formal tests of normality can be done, they are not consid-
ered to be effective because they may be sensitive to departures from 
normality that have little effect on the statistical inference.

Correlation among the predictors, also known as multicollinear-
ity, does not affect the stability of the predicted values, but it can 
greatly affect the stability of the estimated regression coefficients, as 
we saw in the context of predicting weight from height and maxi-
mum jump height2. A commonly used measure of multicollinearity 
is VIF(Xi) = 1/(1 – Ri

2), where VIF is the variance inflation factor 
and Ri

2 is the percent variance of Xi explained by the regression of 
Xi on the other predictors. It is calculated for each predictor Xi via 
a regression in which values of the predictor are fitted against the 
other predictors. If VIF(Xi) is large, then there may be high variation 
in the regression coefficient estimate between different samples—for 
example, when VIF > 10, the regression coefficients should not be 
interpreted. The reciprocal of VIF, the tolerance, is sometimes used 
equivalently.

Multiple regression is one of the most powerful tools in the basic 
statistical toolkit. Although simple to apply, it is prone to over- and 
misinterpretation without attention to diagnostics.
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replicates can be used to estimate the error variance—an MSE much 
larger than the within-replicate variability is evidence that the resid-
uals have an additional component due to lack of fit.

One can assess the assumption of constant noise variance 
(homoscedasticity) by plotting absolute values of residuals together 
with a smooth, nonparametric regression line. If the noise is het-
eroscedastic (nonconstant variance), the plot will have a nonzero 
mean and the regression line will not be horizontal (Fig. 1b).

Although the estimated regression slopes and predicted values are 
robust to heteroscedasticity, their sampling distributions are not4. 
Most important, the s.d. of the sampling distributions depend on the 
variances weighted by values of the predictors, so that use of the test 
statistics and confidence intervals computed under the assumption 
of constant variance is no longer valid. Prediction intervals will be 
particularly inaccurate, as they require appropriate coverage of the 
error distribution as well as of the predicted value. For example, if 
the data are normally distributed but the variance is not constant 
(Fig. 1a), the MSE will be an estimate of the average variance and the 
prediction intervals will be too large for values with small variance 
and too small for values with large variance.

Another factor that can influence the variance estimate is depen-
dence among the errors, which can occur for a number of reasons—
for example, multiple observations on the same individual, time or 
spatial correlation, or a latent random factor that causes familial or 
other cluster correlations. Error correlation biases the MSE as an 
estimator of the variance, and that bias can be high and in either 
direction depending on the type of correlation. As with heterosce-
dasticity, the estimated regression slopes and predicted values are 
robust, but their sampling distributions do not have the values com-
puted under the independence assumption4. Even if the error vari-
ance is constant, in the presence of correlation use of the test statis-
tics, confidence intervals and prediction intervals computed under 
the independence assumption can lead to very misleading results.

One can detect the correlation of residuals over time by plotting 
them versus the time at which the observations were made. Ripples 
and other nonrandom behavior in the plot indicate time correlation. 
Spatial correlation can similarly be detected in a plot of the residuals 
versus the spatial coordinates at which the observations were made. 
Other types of correlation may be more difficult to detect, particularly 
if they are due to unknown latent variables, such as cluster effects.

Statistical inference for linear regression relies heavily on the 
variance estimate, MSE, and is therefore influenced by any factor 
that affects that estimate. Outliers, for example, can increase the 
MSE in two different ways. Outliers with a large residual, such as 
low-leverage points, can directly increase the MSE because the MSE 
is proportional to the sum of squared residuals. Outliers with high 
leverage and a high Cook’s distance3 may have a small residual but 
increase MSE indirectly by increasing the residuals of other data 
points by pulling the linear away from the majority of responses.

Statistical inference is typically done under the assumption that 
the errors are normally distributed with constant variance. A version 
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