
Section 8.2: Logic Networks

April 15, 2025

Abstract

We examine the relationship between the abstract structure
of a Boolean algebra and the practical problem of creating (op-
timal!) logic networks for solving problems1. There is a funda-
mental equivalence between Truth Functions, Boolean Expres-
sions, and Logic Networks which allows us to pass from one
to the other. While a problem might be easiest formulated in
terms of a truth function, we might then recast it as a Boolean
expression. Then Boolean algebra provides us with a simple
mechanism by which to simplify the expressions, and hence to
simplify the underlying logic network, which we then feed into
a logic network.

We’ll examine the binary adder (and half-adder) as a partic-
ular example, which will later be implemented as Finite State
Machines.

1 An Example Application, and Funda-
mental Parallels

Example: Two light switches, one light!

The problem is as follows: A light at the bottom of some stairs is
controlled by two light switches, one at each end of the stairs. The two
switches should be able to control the light independently. How do
we wire the light?

• A Truth Function: f(s1, s2) = L

1From our text: “In 1938 the American mathematician Claude Shannon per-
ceived the parallel between propositional logic and circuit logic and realized that
Boolean algebra could play a part in systematizing this new realm of electronics.”

Mobile User



• A Boolean Expression (find two equivalent Boolean expres-
sions)

• A Logic Network (Basic Components, Mechanics, and Conven-
tions)

– Input or output lines are not tied together except by passing
through gates:

∗ OR gate

∗ AND gate

∗ NOT gate

– Lines can be split to serve as input to more than one device.

– There are no loops, with output of a gate serving as input
to the same gate. (feedback).

Mobile User



– There are no delay elements.

Figure 8.6, p. 638, shows how to wire an “or” – we do it in parallel
(“and” is wired in series).

2 Applications

2.1 Converting Truth Tables to Boolean Expres-
sions (Canonical Sum-of-Products Form)

Example: Practice 11, p. 645

Mobile User



Example: Exercise 15, p. 657 Find the canonical sum-of-products

form for the truth function:

(notice that you can easily simplify that canonical sum-of-products,
using some Boolean algebra.)

2.2 Converting Boolean Expressions to Logic Net-
works

Example: Practice 11, p. 645 (reprise)

Example: Exercise 2, p. 655 Write a truth function and construct a

logic network using AND gates, OR gates, and inverters for the Boolean
expression (x1 + x

′

2) + x
′

1x3

Mobile User



2.3 Converting Logic Networks to Truth Functions
or Boolean Expressions

Example: Exercise 5, p. 655

2.4 Simplifying Canonical Form

We can use properties of Boolean algebra to simplify the canonical
form, creating a much simpler logic network as a result.

Example: Practice 11, p. 645 (reprise)

Wouldn’t it be nice if there were some systematic way of doing this?
That’s the subject matter of the next section! We’ll see two di!erent
ways to simplify a cannonical sum of products.

2.5 An example: Adding Binary numbers

2.5.1 Half-Adders

Half-Adder: Adds two binary digits.

s = x′

1x2 + x1x
′

2

c = x1x2

Mobile User



s is the result of an “XOR” operation (exclusive or) of the two inputs,
whereas c is the product of the two inputs. Note, however, that the
half-adder doesn’t implement s in this way: instead,

s = (x1 + x2) · (x1x2)
′

Questions:
a. How?

b. Why?

2.5.2 Full-Adders

Full-Adder: Adds two digits plus the carry digit from the preceding
step (which we can create out of two half-adders!).

• Given the preceding carry digit ci−1, and binary digits xi and yi.

• We’ll use a half-adder to add xi to yi, obtaining write digit σ and
carry digit γ.

• Then use a half-adder to add the carry digit ci−1 to σ; the write
digit is si, and call the carry digit c.

• To get the carry digit ci, compare the carry digits c and γ: if
either gives a 1, then ci = 1 (so it’s an “or”).

Let’s derive all that from the truth functions, representing the sum
from the full-adder:

ci−1 xi yi ci si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

So the canonical sum of products forms of each function are

si(ci−1, xi, yi) = c′
i−1x

′

i
yi

+ c′
i−1xiy

′

i

+ ci−1x
′

i
y′
i

+ ci−1xiyi
= c′

i−1(x
′

i
yi + xiy

′

i
) + ci−1(x′

i
yi + xiy

′

i
)′

Mobile User



and

ci(ci−1, xi, yi) = c′
i−1xiyi

+ ci−1x
′

i
yi

+ ci−1xiy
′

i

+ ci−1xiyi
= xiyi + ci−1(x′

i
yi + xiy

′

i
)

We recognize these quantities in terms of half-adders:

• We recognize the write digit σ = x′

i
yi + xiy

′

i
and the carry digit

γ = xiyi of the half-adder of xi and yi.

• Then si is just the write digit s of the half-adder of ci−1 and σ;

• Meanwhile, ci is the sum of γ and the carry digit c of the half-
adder of ci−1 and σ.

• That is illustrated in this sad figure I once drew:

Figure 1: The full-adder takes input digits xi and yi, as well as the
carry digit ci−1 from the previous step and computes write digit si and
carry digit ci. Then do it again!

Example: Practice 12, p. 650 Trace the operation of the circuit
as it adds 101 and 111.

Mobile User


	An Example Application, and Fundamental Parallels
	Applications
	Converting Truth Tables to Boolean Expressions (Canonical Sum-of-Products Form)
	Converting Boolean Expressions to Logic Networks
	Converting Logic Networks to Truth Functions or Boolean Expressions
	Simplifying Canonical Form
	An example: Adding Binary numbers
	Half-Adders
	Full-Adders



