
Section 8.3: Minimization

April 21, 2025

Abstract

The word “minimization” in the title of this section refers
to our pursuit of simplified but equivalent Boolean expressions,
which we think of as representing hardware (logic networks).
Our objective is to start with the canonical form derived from
a truth table, and reduce it to a simpler expression (generally
also a sum of products), which is easier (cheaper, faster) to
implement in hardware.

We examine two different techniques for accomplishing this:
the Karnaugh map, and the Quine-McCluskey procedure. The
first is aesthetically pleasing, but limited to a few Boolean vari-
ables; the second can be generalized to handle any number of
variables, and can be coded up relatively easily.

1 Overview

In Section 8.2, we discovered that there is a relatively simple way of
passing back and forth between representations of a truth function (ta-
ble), Boolean expression, and logic network. In particular, we saw that,
given a truth table, it is simple to construct a Boolean expression (the
canonical form) which is a sum of products. Unfortunately, this ex-
pression is often much more complicated than necessary - it can be
simplified, or minimized.

In this section, we consider two methods for dealing with truth tables,
and turning them into simpler Boolean expressions. The Karnaugh
Map turns a truth table into an equivalent “matrix”, which we simplify
using known visual patterns; and the Quine-McCluskey procedure plays
a similar pattern-matching game, making selective deletions to trim
down the canonical form to a simpler Boolean expression.

2 Simplification and the Karnaugh Map

The Karnaugh Map[2] is named for Maurice Karnaugh, who died in
2022 – a mere 98 years old!

https://en.wikipedia.org/wiki/Maurice_Karnaugh
http://mathshistory.st-andrews.ac.uk/Biographies/Quine.html
http://www-crc.stanford.edu/users/ejm/McCluskey_Edward.html
https://en.wikipedia.org/wiki/Maurice_Karnaugh
Mobile User

2.1 Simplification Rules

A couple of simple equivalence rules make our lives easier (and expres-
sions smaller):

xy + x′y = y (1)
x+ x′y = x+ y (2)

Rule (1) follows by standard distributivity and the properties of com-
plements and identity:

xy + x′y = (x+ x′) · y = 1 · y = y

Rule (2) follows by “the curious distributive rule” and the properties
of complements and identity:

x+ x′y = (x+ x′) · (x+ y) = 1 · (x+ y) = x+ y

We demonstrate the utility of these two rules in the following simplifi-
cation:

Example 19, p. 664. Consider the canonical form given by

E = x1x2x3

+ x′

1x2x3

+ x′

1x2x
′

3

= x2(x1x3 + x′

1x3) + x′

1x2x
′

3

= x2x3 + x′

1x2x
′

3 rule (1)
= x2(x3 + x′

1x
′

3)
= x2(x3 + x′

1) rule (2)
= x2x3 + x2x

′

1

This expression is simplified as a sum of products.

2.2 Karnaugh Map Examples

2.2.1 Representation

We can illustrate our two equivalence rules with tables known as the
Karnaugh maps associated with the expressions. Here’s rule (1), x2x1+
x′

2x1 = x1:

x1 x′

1

x2 1
x′

2 1

The terms from the table having a 1 in them indicate when the ex-
pression (given by the canonical sum of products) x1x2 + x1x

′

2 is true
(or when the function is true). Giving this a little thought, we can
interpret this table as telling us that the variable x2 is irrelevant – i.e.
x1x

′

2 + x1x2 = x1.

Mobile User

And here’s the second identity, rule (2): x + x′y = x + y (notice that
we’ve already simplified the canonical sum of products, using xy+xy′ =
x).

x x′

y 1 1
y′ 1

Note that the canonical sum of products of the 1-terms is equivalent to
the negation of the 0-term: (x′

· y′)′ = x + y. In this case, it appears
more e!cient to work with the 0-term, and then just “demorgan it”
to get the solution. However the 0-term requires three negations and a
dot, whereas the “undemorganized term” requires one simple sum.

Here’s a two-variable example (the XOR from the half-adder of section
8.2): x1x

′

2 + x′

1x2

x1 x′

1

x2 1
x′

2 1

Example: Example 19, p. 664: x1x2x3 + x′

1x2x3 + x′

1x2x
′

3

x1x2 x1x
′

2 x′

1x
′

2 x′

1x2

x3 1 1
x′

3 1

While the position of the Boolean variables in the 2x2 example above is
arbitrary, not so for the column labels of the example above: notice that
there is a single change in the Boolean expressions as you read
across the top. Note also that the far left and far right expressions
are also only di”erent by one change. We could wrap this table and
put it onto a cylinder.

A four-variable example.

x1x2 x1x
′

2 x′

1x
′

2 x′

1x2

x3x4 1 1
x3x

′

4 1
x′

3x
′

4 1
x′

3x4 1

In this case, there is nothing arbitrary about either row- or column-
labels: you could wrap top to bottom and right to left, which means
that this table could be wrapped onto a torus (or donut shape).

2.2.2 Simplification

In this section we study a method for simplification, not just represen-
tation, so how do we simplify?

x1 x′

1

x2 1 1
x′

2

=⇒ x1x2 + x′

1x2 = x2

x1 x′

1

x2 1
x′

2 1

=⇒ x′

1x2 + x′

1x
′

2 = x′

1

x1 x′

1

x2 1 1
x′

2 1 1

=⇒ x1x2 + x1x
′

2 + x′

1x2 + x′

1x
′

2 = 1

Check out this trick (idempotence):

x1 x′

1

x2 1
x′

2 1 1

=⇒ x′

1x2 + x1x
′

2 + x′

1x
′

2 = x′

1x2 + x1x
′

2 + (x′

1x
′

2 + x′

1x
′

2) = x′

1 + x′

2

Notice, however, that this is really the same as rule (2) above:

x′

1x2 + x1x
′

2 + x′

1x
′

2 = x′

1(x2 + x′

2) + x1x
′

2 = x′

1 + x1x
′

2 = x′

1 + x′

2

Example: Example 19, p. 664 (Again! – now let’s simplify):
x1x2x3 + x′

1x2x3 + x′

1x2x
′

3

x1x2 x1x
′

2 x′

1x
′

2 x′

1x2

x3 1 1
x′

3 1

Note that we need to wrap to do this one; furthermore see how much
more simply we simplify this expression than we did up top: we use
idempotence, then the simplification rule (1) twice (not needing the
second, its role being handled by the idempotence).

There may be multiple simplifications of a Boolean expression:

Example: Exercise #1, p. 678

x1x2 x1x
′

2 x′

1x
′

2 x′

1x2

x3 1 1
x′

3 1 1 1

Mobile User

We may need to look for quads, rather than pairs:

Example: Exercise #5, p. 678

x1x2 x1x
′

2 x′

1x
′

2 x′

1x2

x3x4 1
x3x

′

4 1 1 1
x′

3x
′

4 1 1 1
x′

3x4 1

3 Simplification and the Quine-McCluskey
procedure

Typically we don’t use Karnaugh Maps when we get beyond four vari-
ables; but Karnaugh suggested how we might proceed if we have up to
six, using his “3-dimensional plastic framework for maps”:

Figure 1: From Karnaugh’s article The Map Method for Synthesis of
Combinational Logic Circuits[1].

Very cool – but not very practical, frankly.

Edward McCluskey died in 2016, at the age of just 86. He was a bridge
back in time to Bertrand Russell and Alfred North Whitehead, because
of his work with Willard Van Orman Quine (who died in 2000, at
the age of 92 – his doctorate was supervised by Whitehead). “Ed was
born October 16, 1929,... and in 1956 earned his doctorate in electrical
engineering from the Massachusetts Institute of Technology, where he
developed what became known as the Quine-McCluskey algorithm for
the design of minimum-cost digital logic circuits. This was the first
systematic approach to logic circuit design and is still used and taught
today.”[4]

About the algorithm, Quine said “I do not do anything with computers,
although one of my little results in mathematical logic has become
a tool of the computer theory, the Quine McCluskey principle. And
corresponds to terminals in series, or to those in parallel, so that if you
simplify mathematical logical steps, you have simplified your wiring. I
arrived at it not from an interest in computers, but as a pedagogical
device, a slick way of introducing that way of teaching mathematical
logic.”[3]

http://mathshistory.st-andrews.ac.uk/Biographies/Quine.html
Mobile User

Figure 2: Tables 8.16 and 8.17, illustrating the Quine-McCluskey min-
imization procedure.

In this procedure, we do exactly the same thing as we do in the method
of Karnaugh maps, but we do it without the map (table). We search for

Mobile User

those elements of the truth table which di”er by a single entry, and then
reduce them (essentially focusing on pairs, rather than quads, etc.).

We may have to do the reduction in several steps, as illustrated in Table
8.16, p. 675. Part (c) of Table 8.16 represents a column of four 1s in
the Karnaugh map.

In the end, we have to determine which of the resultant products is
necessary to recreate the initial truth table. We do this with a second
type of table, as illustrated in Table 8.17, p. 675. This is essentially a
pattern-matching table (we’ll talk about these pattern-matches in our
discussions of regular expressions in section 9.3): each of the column la-
bel expressions (the original product terms) is compared to the “deleted
elements” of the result tables (e.g. the product 0010 matches both 0-10
and 00–). The dash “-” is a wildcard.

Example: Exercise 21, p. 681

x1x2 x1x
′

2 x′

1x
′

2 x′

1x2

x3 1 1 1 1
x′

3 1 1

This is the basic starting table, and the table for the next step:

of 1s x1 x2 x3

3 1 1 1
2 1 1 0

1 0 1
0 1 1

1 0 0 1
0 1 0

of 1s x1 x2 x3

2

1

Furthermore, it is sometimes easier to use the Quine-McCluskey proce-
dure on the complement of the truth function, if the complement has
fewer entries. The downside is that we won’t end up with a sum of
products, but rather a product of sums - if that bothers you!

Example: Exercise 24, p. 682 (or Exercise 21 above, for a
simpler example)

x1x2 x1x
′

2 x′

1x
′

2 x′

1x2

x3x4 1 1 1 1
x3x

′

4

x′

3x
′

4 1 1 1
x′

3x4 1 1 1 1

Mobile User

Example: Exercise 23, p. 682 illustrates the use of the second

type of table.

of 1s x1 x2 x3 x4

3 1 1 1 0
2 1 0 1 0

1 0 0 1
0 0 1 1

1 1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0 0

of 1s x1 x2 x3 x4

2
1

0

References

[1] Maurice Karnaugh. The map method for synthesis of combinational
logic circuits. Transactions of the American Institute of Electrical
Engineers, Part I: Communication and Electronics, 72(5), Novem-
ber 1953.

[2] Max Maxfield. Karnaugh maps 101. EETimes, 2011.

[3] J J O’Connor and E F Robertson. Willard Van Orman Quine.
MacTutor History of Mathematics archive, 2003.

[4] National Academy of Engineering. Memorial Tributes: Volume 21.
The National Academies Press, Washington, DC, 2017.

Mobile User

	Overview
	Simplification and the Karnaugh Map
	Simplification Rules
	Karnaugh Map Examples
	Representation
	Simplification

	Simplification and the Quine-McCluskey procedure

