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l 122 Proofs, Induction, and Number Theory

For reasons that will be clear momentarily, we’ll also establish two additional

cases, P(9) and P(10), by the equations
=3+3+3
lO =5+5

Now we assume that P(r) is true, that is, r can be written as a sum of 3s and S, for
any r, 8 = r = k, and consider P(k + 1). We may assume that & + 1 is at least 11,
because we have already proved P(r) true for » = 8,9, and 10. Ifk + 1 = 11, then
(k+1)=3=k-2=8. Thus k-2 is a legitimate , and by the inductive
hypothesis, P(k — 2) is true. Therefore £ — 2 can be wn'yt%a sum of 3s and Ss,
and adding an additional 3 gives us k + 1 as a sum of 3s Ss. This venifies that
P(k + 1) is true and completes the proof. .

) 4

PRACTICE 9 ’
a. Why are the additional cases P(9) and P(10) proved y in Example 24?

b. Why can’t the first principle of induction be used in Sc proof of Example 24? =
As a general rule, the principle of mathematical induction applies

when information about “one position back™ is enough, that is, when the truth
of P(k) is enough to prove the truth of P(k + 1). The second principle applies
when information “one position back™ isn’t good enough; that is, you
can’t prove that P(k?) is true just because you know P(k) §s true, but you can
prove P(k + 1) true if you know that P(r) is true for one agmore values of r that

are “farther bagk™ than &.
J‘ 9
9
¥

)
SECTION 2.2 REVIEU‘ "
TECHNIQUES * An induﬁwﬁmf need not begin with 1.

O Use the first pringiple ofinz:ction in proofs. o Inductlm ‘can be used to prove statements about

\J) Use the second pringiple of induction in proofs. ?nl:? &hosc values are arbitrary nonnegative

MAIN IDEAS o ﬁrst and second prjnciples of induction each
ve the same conclusion, but one approach may

* Mathematieal induction is a technique to proveJ ¥ be easier to use than the other in a given situation.

properties Of positive integers.
4

EXER 22
1. For all positive integers, let P(n) be the equation

246+ 10+--+(4n—-2)=

a. Write the equation for the base case P(1) and verify that it is true.
b. Write the inductive hypothesis P(k).

c¢. Write the equation for P(k + 1).

d. Prove that P(k + 1) is true.
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Section 2.2 Induction 123

2. For all positive integers, let P(n) be the equation
24+4+6+---+2n=nn+1)

a. Write the equation for the base case P(1) and verify that it is true.

b. Write the inductive hypothesis P(k).

¢. Write the equation for P(k + 1).

d. Prove that P(k + 1) is true. /

In Exercises 3-26, use mathematical induction to prove that the statements are true for every positive integer n.
[Hint: In the algebra part of the proof, if the final expression you want has factorsand you can pull those factors
out early, do that instead of multiplying everything out and getting some humongous expression. ]

33.1+45+9+-+@n-3)=n(2n-1) /

nn+1) nn+1)n+2)

4 1+3+6+ "+ = /
2 6

5..4+10+16+---+6n—-2) = nBn+1) .

6.5+ 10+ 15+ -+ 5n 5"("*') /
- N - +
7. l'+2-+--'+n'="("+|)(2" ) 4
o 4
8.|‘+2~‘+--.+,,‘="‘("+”“/ <
4
>4
2 5 - - -+
9. P+ 344 (2% 1 ="(2" '3)(2" D) g
Y
0.1 +3 4 - Qo= Mnt D2n+ DG +30 1) Q) 7
.- = 30 v

Il.l-3+2-a{;.5+...+n(n+2) n(n + 1)6(2n* 7)

4

b e a -1 14
129 +&+ - +a = forg 0,a # |
- a—1 >

I S S
“1-2  2-3 3-4 nn+1) n+1

e hii ' e
“1-3  3-5 5§57 2n-=1D2n+1) 2n+1
(=1)"""(n)n +

S

ls.l:—2:+3:—4:+-..+(_|)n~l"2=

162 +6+ 18+ --+2-3""1=3"—]
,  2n(n+ 1)2n + 1)
3
+3- P44 n2=(m-=12""+2
nn+ 1)n+2)
3

18.1-2' +2-2

19.1-2+2-3+3-4+---+nn+1)=
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nn+ 1n + 2)(n + 3)
4

21 l +I l + + - = -
‘T3 37 710 Gn-=2)3n+1) 3n+1

2. 1-1'+2-214+3-3'+---+n-n!' =(n+ 1)! — 1 where n! is the product of the positive integers
from | ton.

20.1-2:3+4+2-3:4+-+nn+1)n+2)=

.ol_l

23.14+4+8+---+4 = 3

> -1 i i
241 +x+x‘+---+r‘=—lwhcrcxlsanylnlcger>l
x —

n(3n - 1)

) .
\ nlxn — (.\2/2)]
2

26,1 +[x2-(x—-D]+x3-@Cx-D]+-+[xn—-(x-1)]
where x is any integer = 1 ,

27. A geometric progression (geomelric sequence) is a sequence of lcrmt/hcrc there is an initial term @ and

251 +4+7+10+---+0CBn-2)=

each succeeding term is obtained by multiplying the previous common ratio r. Prove the formula
for the sum of the first n (n = 1) terms of a geometric sequence where r # 1:

a—ar
I=r
28. An arithmetic progression (arithmetic sequence) is a sequence of terms where there is an initial term @ and

each succeeding term is obtained by adding @ @ommon difference d to the previous term. Prove the formula
for the sum of the first #n (n = 1) terms of an anthmetic sequence:

a+ar+a’+-- +at

v
a+(a+d)+(a4yﬁ---+[a+(n—I)d]=£[20+(n-;)‘)‘¢;]

29. Using Exercises 27 and 28, find an expression for the value of the followmgs‘t{ms
8a2+2-5+2-R+- .5 -
b. 4-7+4-7-+4~y+-~+4-7'2 y
C1+7+134---+49 | ¥
d 12+ 17+ +27+---+92 \.:/

30. Prove that S

- ]
/ (=20 + (=2)' + (-2 .;yﬂ (=2 = L
. 3
)
¢

very positive odd integer n. 4
31.Provethatn® > n + | forn = 2.
32. Prove that n® = 2n + 3 forn = 3.
33. Prove that n* > 5n + 10 for n > 6.
34. Prove that 2* > n’ forn = 5.

In Exercises 35-40, n! is the product of the positive integers from | to n.
35. Prove that n! > n’ forn = 4.
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36.
37.
38.
39.
40.
41,

43.

44

45.

46.
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Prove that n! > n’ forn = 6.

Prove that n! > 2" for n = 4.

Prove that n! > 3" for n = 7.

Prove that n!' = 2" 'forn = 1.

Prove that n! < n" forn = 2.

Provethat (1 + x)"> 1 + xX"forn > 1, x > 0.

n+l I3
. Prove that (%) < (%) forn=1land0 <a <b.

Provethat ] + 2 + -+ n < n*forn > 1.

11 1 1

Provethat ]l + =+ =+ -+ 5 <2 - = forn =2
4 9 n n

a. Try to use induction to prove that

| | l
|+5+I+"'+;<2 forn =1

What goes wrong?

b. Prove that
l+—+—+ - : = 2 I f =1
5+3 ==t orn
thus showing that
|+;+-+ +><2 forn=1
Prove that
'+ I + l + + l 1 + f 21
23 >~ "7 QYUS

(Note thatithe denominators increase by 1, not by powers 0f2.)

For Exercises 47-58, prove that the statements are true for eyery positive integer.

47.
48,
49.
. 13" — 6" is divisible by 7.

.2" 4+ (—=1)"*"is divisible by 3.

2% 4 57" 2 s divisible by 27.
.3%*2 + 521 s divisible by 14.

7™ + 16n — 1 is divisible by 64.
10" + 3-4"*2 + Sis divisible by 9.
.n* — n is divisible by 3.

.n’ + 2n is divisible by 3.

.xX* — lisdivisiblebyx — 1 forx # 1.

2% 1is divisible by 7.
3** + 7 is divisible by 8.
7" — 2" is divisible by 5.
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[ 126 Proofs, Induction, and Number Theory

59. Prove DeMoivre’s Theorem:

(cos® + isin®)" = cosnb® + isinnd

forall n = 1. Hint: Recall the addition formulas from trigonometry:

cos(e + B) = cosacosB — sinasinB
sinfa + B) = sinacos B + cosasin B
60. Prove that
sin® nf

sin 4
forall n = 1 and all 6 for which sin 6 # 0. '
61. Use induction to prove that the product of any three consecutive positi&@u is divisible by 3.
62. Suppose that exponentiation is defined by the equation /
xex=x* ¢

for any j = 1. Use induction to prove that x" - X = x" "™ f ILm=1.
(Hint: Do induction on m for a fixed, arbitrary value of

63. According to Example 20, it is possible to use angle ironsto tile a 4 X 4 checkerboard with the upper right
comer removed.Sketch such a tiling. :

64. Example 20 does not cover the case of check ds that are not sized by powers of 2. Determine whether
it is possible to tile a 3 X 3 checkerboard. -

65. Prove that it is possible to use angle irons g tile a 5 % 5 checkerboard with the upper left comner removed.
66. Find a configuration for a 5 X 5 checkérboard with one square removed that is not possible to tile; explain

sin® + sin30 + -+ sin(2n — 1)0 =

why this is not possible.
67. Consider n infinitely long straight lines, none of which are parallel and no lhrc&of which have a common
point of intersection. Show n'= |, the lines divide the plane into (n* + 7'+ 2)/2 separate regions.

68. Astring of Os and Is is to rocessed and converted to an even-parity string by adding a parity bit to the
end of the string (For ,(cxplmation of the use of panity bits, see Example 30 in Chapter 9.) The parity
bit is initially 0. When a 0 character is processed, the parity bit remains unchanged. When a 1 character
is processed, the panity bit 15 switched from 0 to | or from 1 to 0. Rrove that the number of 1s in the final
string, that is, inCluding the parity bit, is always even. (Hint: Congider various cases.)

69. What is wrong with the following “proof” by mathematical j tion? We will prove that for any positive
integer r equal to | more than n. Assume that P(k) is .

k=k+1
ing 1 1o both sides of this equation, we get
k+=k+2
s
Thus,
P(k + 1) is true

70. What is wrong with the following “proof”” by mathematical induction?

We will prove that all computers are built by the same manufacturer. In particular, we will prove
that in any collection of n computers where n is a positive integer, all the computers are built by the
same manufacturer. We first prove P(1), a trivial process, because in any collection consisting of
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one computer, there is only one manufacturer. Now we assume P(k); that is, in any collection of k
computers, all the computers were built by the same manufacturer. To prove P(k + 1), we consider
any collection of ¥ + | computers. Pull one of these & + 1 computers (call it HAL) out of the col-
lection. By our assumption, the remaining k computers all have the same manufacturer. Let HAL
change places with one of these & computers. In the new group of & computers, all have the same
manufacturer. Thus, HAL’s manufacturer is the same one that produced all the other computers, and
all & + 1 computers have the same manufacturer.

71. An obscure tribe has only three words in its language, moon, noon, and soon. New words are composed by
Jjuxtaposing these words in any order, as in soonnoonmoonnoon. Any such juxta‘sition 1s a legal word.
a. Use the first principle of induction (on the number of subwords in the w,m prove that any word in
this language has an even number of 0’s.

b. Use the second principle of induction (on the number of subwords a#'the word) to prove that any word
in this language has an even number of 0’s.

72. A simple closed polygon consists of n points in the plane joined.in pairs by n line segments; each point is
the endpoint of exactly 2 line segments. Following are two gkamples.

(

N

A

a. Use the first principle of induction to prove that the sum of the interior angles of an n-sided simple
closed polyg (= 2)180° forall n = 3.

b. Use the second principle of induction to prove that the sum of?]le interior angles of an n-sided simple
closedspelygon is (n — 2)180° for all n = 3.

73. The Computer Science club is sponsoring a jigsaw puzzle Contest. Jigsaw puzzles are assembled by fitting

2 pi together to form a small block, adding a single piece to a block to form a bigger block, or fitting

ks together. Each of these moves is considered a step in the solution. Use the second principle of
induction to prove that the number of steps required to assemble an n-piece jigsaw puzzle isn — 1.

4. OurWay Pizza makes only two kinds of pizza, pepperoni and vegetarian. Any pizza of either kind comes
with an even number of breadsticks (not fecéssarily the same even number for both kinds). Any order of 2
or more pizzas must include at least 1 of each kind. When the delivery driver goes to deliver an order, he
or she puts the completed order together by combining 2 suborders—picking up all the pepperoni pizzas
from 1 window and all the vegetarian pizzas from another window. Prove that for a delivery of n pizzas,
n = |, there are an even number of breadsticks included.

75. Consider propositional wffs that contain only the connectives /\, \V, and — (no negation) and where wffs
must be parenthesized when joined by a logical connective. Count each statement letter, connective, or
parenthesis as one symbol. For example, ((4) N (B)) V ((C) /(D)) is such a wif, with 19 symbols. Prove
that any such wff has an odd number of symbols.

76. In any group of k people, k = 1, each person is to shake hands with every other person. Find a formula for
the number of handshakes, and prove the formula using induction.
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77. Prove that any amount of postage greater than or equal to 2 cents can be built using only 2-cent and 3-cent
stamps.

78. Prove that any amount of postage greater than or equal to 12 cents can be built using only 4-cent and
S-cent stamps.

79. Prove that any amount of postage greater than or equal to 14 cents can be built using only 3-cent and
8-cent stamps.

80. Prove that any amount of postage greater than or equal to 42 cents gan ﬁmnll using only 4-cent and
15-cent stamps.

81. Prove that any amount of postage greater than or equal to 64 can be built using only S-cent and
17-cent stamps.

82. Your bank ATM delivers cash using only $20 and $50 bills. Brove that you can collect, in addition to $20,
any multiple of $10 that is $S40 or greater.

Exercises 83-84 require familiarity with ideas from calculus. Exercises 1-26 give exact formulas for the sum
of terms in a sequence that can be expressed as ). Sometimes it is difficult to find an exact expression

for this summation, but if the value of f(m) i mcreases monotonically, integration can be nsd to find upper and
lower bounds on the value of the summation, Specifically, ,/'

ntl »
> If(x)drs > flm) = Jf(x)d\' ‘)'.

m=-| v
0 1
4 . »
Using the follm;in%me we can see (on the left) that I ﬂ\‘)MMCI’CS!JmaICS the value of the summation
1 0 j

while (on the right) I f(x)dx overestimates it.
r

J
+ A0 + Six)

A | A2) | f3) [ A4 A [ A2) [ A3 | D

83. Show that
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84. Show that Jrzdx = ms= I xX°dx (see Exercise 7).
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