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| Section 3.1 Recursive Definitions 1m7m

TABLE 3.1

Recursive Definitions

What Is Being Defined | Characteristics

Recursive sequence The first one or two values in the sequence are known; later items in the sequence are
defined in terms of earlier items.

Recursive set A few specific items are known to be in the set; other items in the set are built from
combinations of items already in the set.

Recursive operation A “small” case of the operation gives a specific value; other of the operation are
defined in terms of smaller cases. \

Recursive algorithm Fameynalestvmuesofmemgments,uwWishmn;fahrga
values of the arguments, the algorithm invokes with smaller argument values.

SECTION 3.1 REVIEW

TECHNIQUES MAIN IDEAS

* Generate values in a sequence defined recursively. ecursive definitions can be given for sequences of
* Prove properties of the Fibonacci sequence. objects, sets of objects, and operations on objects
J Recognize objects in a recursively defined collec where basis information is known and new infor-
tion of objects. ’ mation depends on already known information.
* Give recursive definitions for particular of * Recursive algorithms provide a natural way to
objects. solve certain problems by invoking the same task
* Give recursive definitions for certain on on a smaller version of the problem.
objects.

* Write recursive algorithms to sequences «
defined recursively.

EXERCISES 3.1 &
For Exercises 1-12, \w“e first five values in the sequence. X
1. S(1)= 10

S(n) = L) + 10 forn=2 /-
e

Cn)=2Cn— 1)+ S5forn=2 '
3 = )

1
A(n)—A('"—_l)fOI'IUEZ 4

4. B(1)=1
B(n)y=Bn—1)+nforn=2
5. 8(1)=1

S(n) = S(n — l)+%forn22

6. M) =1
Tin)=nTin— 1)forn=2
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172 Recursion, Recurrence Relations, and Analysis of Algorithms
7. ()= 1
Pm)y=nwPin—1)+@n—1)forn=2
8. A(1)=2
An)=nAn = 1)+ nforn=2
9. M(1)=2
M2) =2
M(n) =2M(n — 1) + M(n — 2) forn > 2
10.D(1) =3
DR2) =5 A
Din)=(n—1)Dn—1)+ (n—2)D(n — 2)forn>2
1. W1 =2 i
Wm2)=3 g
Win) = Wn - 1)W(n - 2)forn>2 /
12.7(1) =1

n2)=2 (l
n3)=3 ‘

Tin)=Tin—1)+2N(n—2)+ 37(n—3)forn
In Exercises 1318, prove the given property of the nacci numbers directly from the definition.
13.Fin+ 1)+ F(n—2)=2F(n)forn=3
14. F(n) = 5F(n — 4) + 3F(n — S)forn
15. F(n) = 3F(n — 3) + 2F(n — 4) fi
16. [F(n + D = [F(n)] + F(n —
17.Fn+3)=2Fn+1)+
18. Fin + 6) =4F(n + 3) +

In Exercises 19-22, prove the given property of the Fibonacci numbers for all » = 1. (Hint: The first principle
of induction will work’ o

19. A1) + F2) + -+ +%n) = Fin +2) — 1
20.F2) + Fd)t -+ FQn)=F2n + 1) — 1 /
21.P‘(|)-&ﬁ+---+l’(2n— 1) = F(2n)

2. [FAHE% [FQ)P + -+ + [Fm)] = Fim)F(n + 1)

IW 23-26, prove the given property of the Fibohacci numbers using the second principle of induction.
. Exercise 17 P
24, Exercise 18

25. FAn)<2"forn=1

n-1
26. F(n) > (%) forn=6
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Section 3.1 Recursive Definitions 173

27. Wrrite a pseudocode recursive algorithm for a function to compute F(n), the w Fibonacci number.

28. Walk through your recursive algorithm from Exercise 27 to compute F{(
a. How many times is the function invoked?

b. How many times is (4) computed? /
c¢. How many times is F(3) computed? '

d. How many times is /(2) computed?
Exercises 29 and 30 concern a proof of correctness of the follox(itcrativc algorithm for a function to compute

F(n), the nth Fibonacci number.
F(positive integer n)
//function that iteratively computes the value o
//the nth Fibonacci number
Local variables:
positive integer i /Noop 1
positive integers p, g, r  //t Fibonacci sequence
) 4
ifn = | then
return | (l
else A
if n = 2 then
return 1 400 -
else
i=2
: //p = lagging term in FibonacCi/sequence
{q = | /lq = leading term in Fibonacci sequence
~ while i < ndo
r=p+gq //form the next term as the
/ //sum of the two previous terms
’ P=q /umpupp
g=r //bump up ¢
i=i+1
end while
//q now has the value F(n)
return ¢
end if
end if

end function F

29.a. In the iterative Fibonacci algorithm, the condition B for loop continuation is i < n, so B’ is i = n, but
what is the exact value of i when the loop terminates?

b. When the loop exits, you want ¢ = F(n); what do you want for the value of p at that point?

30.a. Write the loop invariant Q for the iterative Fibonacci algorithm.
b. Prove that Q is a loop invariant.
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l 174 Recursion, Recurrence Relations, and Analysis of Algorithms

31. The values p and g are defined as follows:

1+V5 1-V5

P="" ad ¢="7
a Provethat | +p=pland | + ¢ = ¢’.
b. Prove that
Amy = Z=L
P—9q
c¢. Use part (b) to prove that A
Rn)=£(' +\/§)"_ﬁ(| _\/ED
5 2 5 2
1s a closed-form solution for the Fibonacci sequence.
32. The Lucas sequence is defined by /

L) =1
L(2)=3

L(n) = L(n - l)+/l._| —2)forn=2
a. Write the first five terms of the sequence. f

b. Prove that L(n) = F(n + 1) + F(n — 1) for "= 2 where F is the Fibonacci sequence.

For Exercises 33-36, decide whether the ces described are subsequences of the Fibonacci sequence, that
1s, whether their members are some or all members, in the right order, of the Fibonacci sequence.’

33. The sequence A(n), where A(n) = "+ (the sum of the first » terms of the Fibonacci sequence), n = 1. The

first four values are 2, 3, SYﬁH far—form a subsequence of the Fiboflacei sequence.

34. The sequence B(n), where Bfn) = (n — 1)2" 2 4+ 1, n= 1. The first four values are 1, 2, 5, 13, which—so
far—form a subsequc? of the Fibonacci sequence.

35. The sequence C(n), wheré,((n) is the number of ways in which n coins ¢an be arranged in horizontal rows

with all the coins i row touching and every coin above the bottom row touching two coins in the row
below it, n = 1. Theufirst five values are 1, 1,2, 3, 5, which—so fa—form a subsequence of the Fibonacci
sequence. /

n=1 n=2 n=3 n=4

/ 00000 000 9000 0000 OO

36. The sequence D(n), where D(n) describes the number of ways to paint the floors on an n-story building
where each floor is painted yellow or blue and no two adjacent floors can be blue (although adjacent floors

'Exercises 33-36 are taken from “Mathematical Recreations™ by lan Stewarnt, Scientific American, May 1995
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Section 3.1 Recursive Definitions 175

can be yellow), n = 1. The first four values are 2, 3, 5, 8, which—so far—form a subsequence of the
Fibonacci sequence. For example, D(3) = 5 because a three-story building can be painted

Y Y Y B B
Y Y B Y Y ’/
Y B Y B ¥

(Hint: think about a recursive expression for D(n + 1).)

37 a. The original problem posed by Fibonacci concemned pairs of ral 'lx'o rabbits do not breed until
they are 2 months old. After that, each pair of rabbits produces a pair each month. No rabbits ever
die. Let R(n) denote the number of rabbit pairs at the end nths if you start with a single rabbit
pair. Show that R(n) is the Fibonacci sequence. '

b. Write 27 and 62 as the sum of distinct nonconsecutive Fibonacci numbers.,

38.a. The sequence of Catalan numbers is defined r 1 by
) =1
cly=1

C(n) = i C(!l)C(n —k)forn=2 JJ
1

Compute the values of ((2), (\J ('(4) using this recurrence relation, ../
b. Frank and Jody are both idates for president of the County C ouncil.@ke number of votes cast equals
2n, where n votes are cast for Frank and » for Jody. Votes are cou sequentially. The ballot problem
asks: In how many w the votes be counted so that Jody’s total is never ahead of Frank’s total?
The answer, as it tums ott, is C(n), the nth Catalan number. I‘ye ample, if n = 5, one possible counting

)

sequence that meets this requirement is \J
j FENFIFFY &

Using m = 3, write down all the satisfactory cou*hgqucnccs and compare the result to the Catalan

number C(3).
39. A ence is recursively defined by ) 4
S(1) =2
S2)=2
53)=6

S(n) = 385(n - 3)forn=3

Prove that S(n) is an even number forn = 1.
40. A sequence is recursively defined by

ns)=6
ne) = 10
Tin)=2NMn—2)+2forn=7

Prove that T(n) = 2nforn = 7.
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{ 176 Recursion, Recurrence Relations, and Analysis of Algorithms

41. A sequence is recursively defined by

S(0)=1
S(1)y=1
Sn)=25(n—1)+S(n—2)forn=2

A

a. Prove that S(n) is an odd number for n = 0. ‘
b. Prove that S(n) < 65(n — 2) forn = 4.

42. A sequence is recursively defined by /
70) =1
1) =2 (
Tn)=2Nn—1)+Tn=2)forn=2

Prove that T(n) = (3)" forn = 0.
43. Write a recursive definition for a geometric progression with initial term @ and common ratio » (see
Exercise 27, Section 2.2.).

44. Write a recursive definition for an an tic progression with initial term @ and common difference d (see
Exercise 28, Section 2.2.).

45. In an experiment, a certain col bacteria initial ly has a population of 50,000. A reading is taken every
2 hours, and at the end of evgry 2-hour interval, there are 3 times as many bactﬁla as before.
a. Write a recursive defini for A(n), the number of bacteria present at the beginning of the nth time

period. '{'

b. At the bcgmnwf which interval are there 1,350,000 bacteria present"

46. An amount of $500'is invested in an account paying 1.2% interest compounded annually.
a. Write a recursive definition for P(n), the amount in the a at the beginning of the nth year.
b. Aft many years will the account balance exceed $570?

47. A set Tof numbers is defined recursively by

fzbelongstof
2, Ifx belongs to 7, so does x + 3 and 2 g

Which of the following numbers belong to 77
a. 6 b. 7 c. 19 d. 12

48. A set M of numbers is defined recursively by

1. 2 and 3 belong to M.
2. If x and y belong to M, so does x * y.

Which of the following numbers belong to M?
a. 6 b. 9 c. 16 d 21 e. 26 f. 54 g 72 h. 218
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49. A set S of strings of characters is defined recursively by

1. a and b belong to S.
2. If x belongs to S, so does xb.

Which of the following strings belong to S?
a. a b. ab c. aba d. aaab e. bbbbb

50. A set W of strings of symbols is defined recursively by

1. a, b, and c belong to W.
2. If x belongs to W, so does a(x)c.

Which of the following strings belong to W?
a. a(b)c b. a(a(b)c)c c. a(abc)e d. a(q(a(a)c)c)c e. a(aacc)c
51. A set S of integers is defined recursively by

1. 0 and 3 belong to S.
2. If x and y belong to S, so does x + y. /

Use structural induction to prove thét every integer in S is a multiple of 3.
52. A set T of strings is defined recursively by

l. pggbelongsto T.
2. If x and y belong to'Thso do Pxqq, qqxp, and xy.

Use structural inﬂﬁction to prove that every string in T has twice ag many g¢’s as p’s.
53. Give a recursive definition for the set of all unary predicate wifs in x.

54. Give a recursive definition for the set of all well-formed formulas of integer arithmetic, involving integers
together with the arithmetic operations of +, —, *, and /.

55. Give a recursive definition for the set of all odd integers.

ﬂ;ﬁflGive a recursive definition for the set of all strings of well-balanced parentheses.
#'§7. Give a recursive definition for the set of all binary strings containing an odd number of 0s.

58. Give a recursive definition for the set of all binary strings containing an even number of 1s.
59. Give a recursive definition for the set of all binary strings ending with 0.

60. Give a recursive definition for the set of all binary strings with an equal number of Os and 1s.
61. Use BNF notation to define the set of positive integers.

62, Use BNF notation to define the set of decimal numbers, which consist of an optional sign (+ or —),
followed by one or more digits, followed by a decimal point, followed by zero or more digits.

63. Give a recursive definition for x*, the reverse of the string x.
64. Give a recursive definition for | x|, the length of the string x.
65. Give a recursive definition for the factorial operation n! forn = 1.
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{ 178 Recursion, Recurrence Relations, and Analysis of Algorithms

66. Give a recursive definition for the addition of two nonnegative integers m and n.

67.a. Write a recursive definition for the operation of taking the maximum of » integers ay, ..., a,,n = 2,
b. Write a recursive definition for the operation of taking the minimum of n integers a,, ..., a,, n = 2.

68.a. Give a recursive definition for the conjunction of n statement letters in propositional logic, n = 2.

b. Write a generalization of the associative property of conjunction (tau ical equivalence 2b of
Section 1.1) and use induction to prove it.

69. Let 4 and B,, B,, ..., B, be statement letters. Prove the finite extension of the distributive equivalences of
propositional logic:

AV (B, AByA+--AB) < (AVB)NAVBYA-- I (4VB,)
and

AN(B, VB,V --VB)<(AAB)V(AAB)V ---V (4B,
forn=2.

70. Let B,, B,, ..., B, be statement letters. Prove the finite extension of De Morgan’s laws:

(8,vs,v.--vyas'./\3'3/\---/\8'_

v

" >
(B, /\y-/\B,)'ﬁB', VB,V---VB, &
forn=2. . J.
In Exercises 71-76, write the bod-y‘of a recursive function to compute S(@Y; the given sequence S.
71.1,3,9,27,8,... Y JJ’
72.2,1, 172, V4,1 v/

73.1,2,4, 3,11, 16,92,

74.2,4516, : ({.

v
75.a,b,a b, a + 2b,2a + 3b,3a + Sb, ... N
T6.pp— P +4q.p—29,p+29,p 3, ...

77. alue is returned by the following recursive function Mystery for an input value of n?
Mystery (positive integer n)
ifn = | then
return |
else
return Mystery(n — 1) + 1
end if

end function Mystery

78. The following recursive function is initially invoked with an i value of 1. L is a list (array) of 10 integers.
What does the function do?
g(list L; positive integer /; integer x)
if i > 10 then
return 0
else

8 of 10 2/23/22,4:36 PM



- Pages - https://print.vitalsource.com/requests/FtaHyNpTeQbWTBEA2C3B/cl...

Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

Section 3.1 Recursive Definitions 179

if L] i ] = x then
return 10
else
return g(L, i + 1, x)
end if 4

end if "

end function g

79. Informally describe a recursive algorithm to reverse the entries in of items.

80. Informally describe a recursive algorithm to compute the sum digits of a positive integer.

81. Informally describe a recursive algorithm to compute the gr, common divisor of two positive integers
a and b where a > b. (Hint: The solution is based on the Buclidean algorithm, discussed in Section 2.3. In
particular, make use of expression (5) on page 134.) a

82. The famous Towers of Hanoi puzzle involves irvith n disks of varying sizes stacked in order from
the largest (on the bottom) to the smallest (on theftop) on 1 of the pegs. The puzzle requires that the disks
end up stacked the same way on a different peg; only one disk at a time can be moved to another peg, and

no disk can ever be stacked on top of a smaller disk. Informally describe a recursive algorithm to solve the
Towers of Hanoi puzzle.

-

83. Simulate ecution of algorithm SelectionSort on (hp/;ollowing list L; write the list after every
exchang€ that changes the list.

4,10, -6, 2,5

84. e the execution of algorithm SelectionSort on the following list L; write the list after every
exchange that changes the list.

2
9.0,2,6,4
85. The binary search algorithm is used with the following list; x has the value “Chicago.” Name the elements
against which x is compared.
Boston, Charlotte, Indianapolis, New Orleans, Philadelphia, San Antonio, Yakima

86. The binary search algorithm is used with the following list; x has the value “flour.” Name the elements
against which x is compared.

butter, chocolate, eggs, flour, shortening, sugar

87. Do a proof of correctness for the iterative function given in this section to compute S(n) of Example 1,
S(n) = 2".

88. The Online Encyclopedia of Integer Sequences (OEIS) was onginated and maintained for many years by
Neil Sloane, a mathematician at AT&T who has also written several books about sequences. The OEIS
Foundation now manages the database, which contains more than 200,000 sequences of integers that have
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been submitted and studied by many people. (See oeis.org). There is even a YouTube movie about the OEIS!
Recaman s sequence (number A005132 in the OEIS catalog) is a recursive sequence defined as follows:

a(l)=1
Forn > 1,
a(n — 1) — n if that number is positive and not already in the sequence,
a(n) = otherwise
aln—1)+n

a. Confirm that the first few terms of this sequence are 1,3,6,2, 7, 13.

b. It has been conjectured that every nonnegative integer will eventually appear & sequence. Find the
index of this sequence at which the following numbers appear: 10, 12, 23.

m’_s.z | RECURRENCE RELATIONS .) ’I

We developed two algorithms, one” ve and one recursive, to compute a

value S(n) for the sequence S of Example 1. However, there is a still easier way to
compute S(n). Recall that ’

S(1 (N
S(n) =28(n — 1) forn =2 (2)

S)=2=2'
’/ 52)=4=2 JJ
5(3) =8 =2

54) =16 = 2* b

Because

and so on, we can see that

S(n) = 2NV (3)

ing Equation (3), we can plug in a vuluy%r n and compute S(n) without hav-

ing to compute—either explicitly, or, t’gh recursion, implicitly—all the lower

values of § first. An equation such here we can substitute a value and get

the output value back directly, is @cd a closed-form solution to the recurrence

) relation (2) subject to the basis?p (1). Finding a closed-form solution is called
solving the recurrence relation:

Recurrence relations ¢afl be used to describe a variety of things, from chemi-
cal degradation (scc;ﬁcning problem for this chapter) to the amount in an
interest-bearing acc from the growth of species to the spread of a computer
virus. Clearly, it is nice to find a closed-form solution to a recurrence relation
whenever possible.

Linear First-Order Recurrence Relations

Expand, Guess, and Verify
One technique for solving recurrence relations is an “expand, guess, and verify”
approach that repeatedly uses the recurrence relation to expand the expression for
the nth term until the general pattern can be guessed. Finally the guess is verified
by mathematical induction.
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