Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

} Section 7.3 Shortest Path and Minimal Spanning Tree 591

SECTION 7.3 REVIEW

TECHNIQUES MAIN IDEA
) Find a shortest path from x to y in a graph (using * Algorithms that are @(n’) in the worst case can
Dijkstra’s algorithm). find a shortest path between two nodes or a mini-
Q) Find a minimal spanning tree for a graph (using mal spanning tree in a simple, positively weighted,
Prim’s algorithm). connected graph with # nodes.
EXERCISES 7.3
For Exercises 14, use the graph that follows. Apply Dijkstra’s algorithm for irs of nodes given; show the

values for p and IN and the d values and s values for each pass through the while loop. Write out the nodes in
the shortest path and the distance of the path.

l. From2to35
2. From3to6
3. Fromlto5 .
4. From4to7 4
4 »
For Exercises § , use the graph that follows. Apply Dijkstra’s algorithm for the pairs of nodes given; show

the values for p and /N and the d values and s values for e?pass through the while loop. Write out the nodes
in the t path and the distance of the path. ,’y

> e

~
~
.

5. Fromatoe

6. Fromdtoa






Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

{ 592 Graph Algorithms

For Exercises 7 and 8, use the directed graph that follows. Apply Dijkstra’s algorithm to the nodes given; show
the values for p and /N and the d values and s values for each pass through the while loop. Write out the nodes
in the shortest path and the distance of the path.

7. From 1 t0 7 D 4

8. From3tol

9. a. Modify Dijkstra’s algorithm so that it finds the shortest % x to all other nodes in the graph.
b. Does this change the worst-case order of magnitude of the algorithm?

10. Give an example to show that Dijkstra’s algorithm does noywork when negative weights are allowed.

Another algorithm for finding shortest paths from a sin rce node to all other nodes in the graph is the
Bellman-Ford algorithm. In contrast to Dijkstra’s algorithm, which keeps a set of nodes whose shortest path
(minimum-weight path) of whatever length (that is, number of hops) has been determined, the Bellman—Ford
algorithm performs a series of computations that’ks to find successively smaller-weight paths of length 1,
then of length 2, then of length 3, and so on, up to g#maximum of length n — 1 (ifa pa(hcgts at all, then there
is a path of length no greater than n — 1) A pseudocode description of the Bell algorithm is given
in the accompanying box; when using this algorithm, the adjacency matrix A must./ Ali,i] = 0 forall i.

ALGORITHM BELLMAN-FORD ALGORITHM Vy
Mom(n X n matrix A; node x; Q}’ofintcgets d; array of nodes s)
the shortest path between node x and all other nodes in a simple,
/Iweighted, connected graph. A is ified adjacency matrix with A[i, i] = 0.

//When procedure terminates, in the shortest path from x to a node y
/fare y, s[y], s[s[¥]], ..., x; tance for that path is df y].

Local variables: \
nodes =, p nodes
array of integers ¢ mporary distance array created at each iteration

//initialize arrays d and s; this establishes the shortest 1-length paths from x
dix] =0
for all nodes = not equal to x do
dz] = Alx,z]
s[z] =x
end for

//find shortest paths of length 2, 3, etc.
fori=2twn— 1do
t=d //copy current array d into array ¢







Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

Section 7.3 Shortest Path and Minimal Spanning Tree 593

/fmodify 1 to hold shortest paths of length i
for all nodes = not equal to x do
//find the shortest path with one more link
p = node in G for which (d[p] + A[p, z]) is minimum
z] =dp] + Alp,z]
if p # = then
sz]=p
end if

end for A
d=1; /lcopy array ¢ back into d

end for
end Bellman-Ford

For Exercises 11-14 use the Bellman—Ford algorithm to find the onest path from the source node to any other
node. Show the successive d values and s values.

11. Graph for Exercises 14, source node = 2 (comp answer to Exercise 1)
12. Graph for Exercises 1-4, source node = 1 (compdre your answer to Exercise 3)
13. Graph for Exercises 7-8, source node = | (compare your answer to Exercise 7)
14. a. Accompanying graph, source node = ompare your answer to Exercise 10)

b. What does this say about the Bell Ford algorithm as opposed to Dijkstra’s algorithm?

/'.4& \

To compute the distance for‘e shortest path between any two nodes in a graph, Dijkstra’s algorithm could be
used repeatedly, with node in turn as the source node. A different algorithm, Floyd s algorithm, can also
be used to solve this “all pairs™ shortest-path problem, but while Floyd’s algorithm produces the weight of
all shortest paths, it does not calculate what the shortest paths actuallyare, that is, what nodes are on a given
shortest path yd’s algorithm is very similar to Warshall’s algenthm. A description follows, where A is the
adjacency ftrix of the graph with A[i, i] = 0 forall i.

ALGORITHM FLOYD’'S ALGORITHM
—
Floyd (n X n matgi

A)
//Computes the shc&s! path between any two nodes in a simple, welghted,
//connected graph; A is a modified adjacency matrix with A[/,i] =
//Upon termination, A will contain all the shortest-path distances
fork = 1tondo
fori = 1tonde
for j = 1 tondo
if Ali, k] + A[k,j] < Ali,j] then
Ali,j] = Ali, k] + Alk,j]
end if
end for
end for
end for
end Floyd







Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

{ 594 Graph Algorithms

For Exercises 15 and 16, use Floyd’s algorithm to find the distances for all the shortest paths. Show the successive
values of the A matrix for each pass through the outer loop.

15. Figure 7.10
16. Graph for Exercises 1-4

For Exercises 17-20, use Prim’s algorithm to find a minimal spanning tree for the graph in the specified figure.
17. Graph for Exercises 1-4

18. 3
, 3 2
4
| 5 s 2
5 3 ! 8
2 2 z
6
19, 2
4 4
! 6

Prim’s algorithm “grows” the tree bitrary starting point by attaching adjacent short arcs, Kruskal’s
algorithm adds arcs in order by,increéasing distance wherever they may be in the graph. Ties are resolved
arbitrarily. The only restriction is that an arc is not added if adding it wm&reate a cycle. The algorithm
terminates when all nodes have been incorporated into a connected struwc A (very informal) pseudocode

Kruskals algorithm is another algorithm :z finding a minimal spanning tree in a Wected graph. Whereas

description follows: y
N .//
MM KRUSKAL'S ALGORITHM 0
| Kruskal (n X n matrix ecuon ofarcs T')
//Finds a minimal g tree; T is initially empty;

//at termination, 7' = Minimal spanning tree
order arcs in G by increasing distance
repeat
if next arc in order does not complete a cycle then
add that arc into T’
end if
until 7'is connected and contains all nodes of G
end Kruskal







Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

‘ Section 7.3 Shortest Path and Minimal Spanning Tree 595

For Exercises 21-24 use Kruskal’s algorithm to find the minimal spanning tree.
21. Graph for Exercises 14 23. Graph for Exercise 19
22. Graph for Exercise 18 24. Graph for Exercise 20

25, Give an example to show that adding the node closest to /N at each step, as is done in Prim’s minimal
spanning tree algorithm, will not guarantee a shortest path.

26. Let a be the arc of lowest weight in a weighted graph. Show that @ must be an arc in sy minimal spanning tree.

27. Acity plans to lay out bike paths connecting various city parks. A map with istances between the parks
is shown in the figure. (Some direct connections would have to cross maj s, so these distances
are not shown in the map.) Find which paths to pave so that all park?nectcd but the cost is minimal.

28. Assume that arc weights represent distance. Then adding new nodes and arcs to a graph may result in a
spanning tree for the new graph that eight than a spanning tree for the original graph. (The new
spanning tree could represent a mini st network for communications between a group of cities ob-
tained by adding a switch in a location outside any of the cities.)

a. Find a spanning tree of nr weight for the following labeled graph. What is its weight?

100 4
A
' 100 100 N

100 /"

b. node in the center of the square. Add new arcs from the center to the corners. Find a spanning tree
or the new graph, and compute its (approximate) weight.

. At the beginning of this chapter, you received the following assignment:

You are the network administrator for a wide-area backbone network that serves your company’s many offices
across the country. Messages travel through the network by being routed from point to point until they reach
their destination. Each node in the network therefore acts as a switching station to forward messages to other
nodes according to a routing table maintained at each node. Some connections in the network carry heavy traf-
fic, while others are less used. Traffic may vary with the time of day; in addition, new nodes occasionally come
on line and existing nodes may go off line. Therefore you must periodically provide each node with updated
information so that it can forward messages along the most efficient (that is, the least heavily traveled) route.

How can you compute the routing table for each node?

You realize that you can represent the network as a weighted graph, where the arcs are the connections
between nodes and the weights of the arcs represent traffic on the connections. The routing problem then be-
comes one of finding the shortest path in the graph from any node to any other node. Dijkstra’s algorithm can
be used to give the shortest path from any one node to all other nodes (see Exercise 9), so you could use the
algorithm repeatedly with different start nodes. Or you could use Floyd’s algorithm. Discuss the advantages
and disadvantages of each approach, including an analysis of the order of magnitude of each approach.






