Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

l

604 Graph Algorithms

A depth-first or breadth-first search can be used to find the connected com-
ponents of a graph. We pick an arbitrary node as a source node and then conduct
a search. When the algorithm terminates, all visited nodes belong to one compo-
nent. We then find an unvisited node in the graph to serve as a source for another
search, which will produce a second component. We continue this process until
there are no unvisited nodes in the graph.

Although we defined reachability only for directed graphs, the concept also
makes sense for undirected, unconnected graphs. Let us consider only simple un-
directed, unconnected graphs but impose the convention that, even though there
are no loops, each node is reachable from itself. Reachability then becomes an
equivalence relation on the set of nodes of the graph; our convention imposes the
reflexive property, and symmetry and transitivity follow because the graph is un-
directed. This equivalence relation partitions the nodes of the graph into equiva-
lence classes, and each class consists of the nodes in nnected component
of the graph. Warshall’s algorithm can be applied to undirected graphs as well as
directed graphs. Using Warshall’s algorithm results in a matrix from which the
nodes making up various components of the can be determined, but this
requires more work than using the de t h.

As a final remark about depth-first h, we saw in Section 1.5 that the
programming language Prolog, when pr 1
definition, pursues a depth-first search

SECTION 7.4 REVIEW J

TECHNIQUES

MAIN IDEAS

D Conduct a depth-first search of a graph, y * Algorithms exist to visit Wcs of a graph

\J) Conduct a breadth-first search of a g

EXERCISES 7.4

systematically. \
* Depth-first and bradthqﬁl!&earches can serve as a
basis for other tasks. :/

v

For Exercises 1-6, write the node!ﬁdcp(h-ﬁrst search of the following yaﬁcginning with the node specified.

)

3.d

Y 2 )~







Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be

reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

Section 7.4 Traversal Algorithms 605

For Exercises 7-10, write the nodes in a depth-first search of the following graph, beginning with the node
specified.

d
[ 4
h
J'
N
&
k o
- d

7. a 8. e 9.% 10. A

For Exercises 11-16, write tHE nodes in a breadth-first search of the WK for Exercises 1-6, beginning with
the node specified. \Y
/

ean, e/ 13.d 14 g 15¢ 16Ky

the cified. J

For Exer ZS 17-20, write the nodes in a breadth-first sga h of the graph for Exercises 7-10, beginning with
4

17 18.¢ 19 20 h

For Exercises 21-24, write the nodes in a depth-first search of the following graph, beginning with the node
specified.

2la 2.g 23.f






Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

[ 606 Graph Algorithms

For Exercises 25-28, write the nodes in a breadth-first search of the graph for Exercises 21-24, beginning with
the node specified.

25.a 26.g 27. f 28. e

29. In the computer network in the accompanying figure, the same message is to be broadcast from node C
to nodes A4, E, F, and G. One way to do this is to find the shortest path from C to each of these nodes and
send out multiple copies of the same message. A more efficient approach is to send one copy out from C
along a spanning tree for the subgraph containing the nodes involved. Use the depth-first search algorithm
to find a spanning tree for the subgraph.

G b ,
F
30. Using the graph for Exercise 29, use the breadth-first search algorithm to %nning tree for the subgraph.

31. Use the depth-first search algorithm to do a topological sort on the following graph. Indicate the counting
numbers on the graph. Also state the starting node or nodes for h.

Y v &

32. Use the depth-first search ithm to do a topological sort on the following graph. Indicate the counting
numbers on the graph. Also state the starting node or nodes for the s _

33. The data structure used to implement a breadth-first search is a queue. What is the appropriate data structure
to implement a depth-first search?

34. Find a way to traverse a tree in level order, that is, so that all nodes at the same depth are listed from left
to right for increasing depth. (Hint: We already have a way to do this.)

35. Describe how the depth-first search algorithm can be used in a connected (undirected) graph to detect
the presence of cycles in the graph. (While it is simple to look at Figure 7.13 and see that a-b—c—e-a, for
example, is a cycle, in a huge graph with thousands of node and arcs, a cycle may be less easy to spot, in
addition to which you might not even have a visual representation.)






Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be
reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

Section 7.5 Articulation Points and Computer Networks 607

36. a. Describe the order in which nodes are visited in a breadth-first search of the bipartite complete graph K, ,..
b. Describe the order in which nodes are visited in a depth-first search of the bipartite complete graph K, ,..

" SECTION 7.5 | ARTICULATION POINTS AND COMPUTER NETWORKS

¢ DEFINITI

The Problem Statement /

In a graph that represents a computer k, the nodes denote the communicat-
ing entities (end-user computcrs‘;a{‘rs.l;mcrs, and so on) and the arcs denote
the communications medium (¢ cable, fiber optic, and so on). Such a graph
should be a connected graph_se that there is a path between every pair of nodes.
To minimize the length oﬁ or wire required, we would choose a minimum
spanning tree. However, if an arc in a minimum spanning tree is removed (for

example, that section of cable or wire is damaged or broken), then the graph is no
longer connected h arc becomes a single point of failure for the network. That

1s why such ork usually contains more arcs than just those of a minimal
spanning tre€. However, even in a graph sufficiently rich in arcs to withstand the
loss of a_single arc, a node may be a single point of failure. If the node fails (and

thus ig'logically removed), the arcs of which that node 15 an endpoint are disabled
and the result may be a disconnected graph.

ARTICULATION POINT
A node in a simple, connected graph is an ‘rtic‘htion point if its removal
(along with its attached arcs) causes the remMaining graph to be disconnected.

-

=T
-

¢ DEFINITION

Node d in the graph of Figure 7.20a is an articulation point. Removing d results in
the disconnected graph of Fi 7.20b.

-0 a
£
£
“~
b c b c
d
e S e f
g 4
(@) (b)
Figure 7.20 .
BICONNECTED GRAPH

A simple, connected graph is biconnected if it has no articulation points.






