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Abstract

Subsequences are sequences, formed from other sequences. We draw the line at

subsequences, and don’t really require subsubsequences, subsubsubsequences, or even

subnsequences.

Definition: subsequence: Let {an} be a sequence of real numbers, and let

n1 < n2 < · · · < nk < · · ·

be a strictly increasing sequence of natural numbers. Then

{an1
, an2

, · · · , ank
, · · ·}

is called a subsequence of {an} and is denoted by {ank
}.

Note: A subsequence is formed from a sequence by selecting certain terms from the sequence
in order.

Definition: subsequential limit: Let {an} be a sequence of real numbers. We say that
L is a subsequential limit if there is a subsequence of {an} that converges to L.

Example: Consider the sequence

an =

{

1
n

n even
π n odd

(1)

Then there is a subsequential limit of 0, and subsequential limit of π.

Theorem 2-10: A sequence {an} converges to L if and only if every subsequence of {an}
converges to L.

Note: So clearly the example sequence (1) defined above has no limit, since there are two
distinctly different subsequential limits.

Example: #1, p. 51
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(i) {
1

2
,
−1

2
,
3

4
,
−3

4
,
7

8
,
−7

8
, . . .}

(ii) {sin
(

nπ

2
+

1

n

)

}

(iii) {[(−1)n + 1]n}

Theorem 2-11: The number L is a subsequential limit point of the sequence {an} if and
only if for any ε > 0, the interval (L − ε, L + ε) contains infinitely many terms of {an}.

Corollary 2-11: Let {an} be a sequence of real numbers. Then L is a subsequential limit
point of the sequence if and only if for any ε > 0 and for any positive integer N , there is a
positive integer n(ε, N) > N for which |an(ε,N) − L| < ε.

Note: If you like, we could consider stepping off the terms of a subsequence with limit L

by

(i) choosing a sequence of εn tending to zero,

(ii) Starting with ε1 and a challenge N , take n1 = n(ε1, N).

(iii) Iterate, always choose the next “challenge N” to be greater than the preceding nk.

Example: Exercise 8, p. 51 By considering this exercise we discovered some really
fascinating things about sequences and subsequential limits. Lindsay encapsulated it well by
saying that a countable sequence (a sequence contains at most a countably infinite number of
different values) can approach an uncountable number of subsequential limits. Very strange!

For the countably infinite case, we discovered a sequence whose elements have every
natural number as subsequential limits: (1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,....). We discovered that

ai = 1 if i =
k(k + 1)

2
+ 1, for k ∈ IN (or k = 0).

For which values of i do we have ai = m, where m is a natural number? Define tk ≡
k(k + 1)

2
, the kth triangular number. Then

i = tk + (m − 1), k ∈ {m − 1, m, m + 1, m + 2, . . .}

To show that every rational is a subsequential limit, we simply order the rationals by the
integers as {an}, then use the same idea for the sequence {qn}:

(a1, a1, a2, a1, a2, a3, a1, a2, a3, a4, a1, a2, a3, a4, a5, ....)

so that we visit every rational number an infinite number of times.
To show that every real is a subsequential limit, we must argue that we can take a subset

of {qn} to approach any real arbitrarily. Since every rational is repeated an infinite number
of times, the idea is illustrated by attempting to find π as a subsequential limit: take the
first occurance of 3, then the first occurance of 3.1 following 3, then the first occurance of
3.14 following that, etc.: (3, 3.1, 3.14, 3.141, 3.1415, . . .). With each iterate we get closer and
closer to our real value r with our rational-valued qn.
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