$
s^2 = \frac{1}{n-1}\sum_{i=1}^n
\left(\frac{1}{n} \sum_{j=1}^n(x_i - x_j) \right)
\left(\frac{1}{n} \sum_{k=1}^n(x_i - x_k) \right)
$
Replacing the mean $\overline{x}$ by the sum which defines it,
$s^2 = {\frac{1}{n^2(n-1)}}\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (x_i-x_j)(x_i-x_k).$
Adding an appropriate form of zero (a favorite trick!),
$
s^2 = {\frac{1}{n^2(n-1)}} \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n
(x_i-x_j)(x_i-x_j+x_j-x_k),
$
which is
$
s^2 = {\frac{1}{n(n-1)}} \sum_{i=1}^n \sum_{j=1}^n
(x_i-x_j)^2 -
{\frac{1}{n^2(n-1)}} \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n
(x_j-x_i)(x_j-x_k).
$
|
Notice that the second sum in the previous expression as exactly $s^2$, so
$
s^2 = {\frac{1}{2n(n-1)}} \sum_{i=1}^n \sum_{j=1}^n
(x_i-x_j)^2,
$
or, finally,
$
s^2 = {\frac{1}{n(n-1)}} \sum_{i=1}^n \sum_{j=i+1}^n
(x_i-x_j)^2,
$
This you can think of as
$
s^2 = \mathrm{ average distinct pair deviation squared}
$
(which we knew!;)
|