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P. Haxell

Abstract. This paper surveys a collection of results on finding special sets of vertices in graphs
with vertex partitions, all of which can viewed as models for “committee-choosing” problems.

1. INTRODUCTION. As usual, the dean of your institution wishes to form a com-
mittee, consisting of one representative from each department in the faculty. Choosing
such a committee without any restrictions would be an easy task; however, as every-
body knows, there are certain pairs of faculty members who really should not be on a
committee together. Neither one of them can tolerate the other having the last word.
Thus in order to ensure finite committee meetings, the dean should avoid choosing
both members of such a pair when selecting the members of the committee. In this
article we are interested in finding out when this is possible.

First we describe the problem in terms of graphs. Let G be a graph, and suppose the
vertex set of G (the set of faculty members) is partitioned into classes (departments).
Each edge of G is a pair of vertices representing a conflict, i.e., a pair of faculty mem-
bers who should not both be chosen for the committee. Note that since we will choose
only one representative from each department, we may assume that no two vertices
in the same class are joined by an edge. An independent transversal (abbreviated IT)
of G is a set T of vertices in G containing exactly one vertex from each class of the
partition (a transversal) that is independent, meaning no two vertices in T are joined
by an edge. In other words, an independent transversal in G is exactly the notion of a
good choice of committee from the faculty.

It only takes a moment to see the first piece of bad news for the dean: that faculties
can exist that simply do not have any good choice of committee. Imagine for example
a faculty in which no member of the Department of Environmental Studies, however
open-minded, could see eye to eye on any issue with any member of the Department
of Mountaintop-Removal Mining Development. (This corresponds to a complete bi-
partite graph between two partition classes in G.) Thus we might ask whether there is
at least an easy way to decide whether a given partitioned graph has an IT or not.

This brings us to the second piece of bad news. Consider the restricted version of
the committee-choosing problem in which each faculty member is captivated by one
very important two-sided issue. Two people holding opposite views on the same issue
simply can’t be on a committee together. Let us suppose further that no department
contains two members who care about the same issue. This situation then corresponds
to the graph G being a disjoint union of complete bipartite graphs, in which each
complete bipartite graph contains at most one vertex of each partition class. Can we
efficiently determine if a good committee exists? Unfortunately almost certainly not,
as this is a model of the most basic NP-complete problem, the SAT problem (see,
e.g., [15]). Suppose A is a boolean formula in conjunctive normal form, that is, A is
a conjunction of clauses, each of which is a disjunction of propositional variables and
negations of variables. Let G be the graph in which each clause of A corresponds to a
partition class of G, and the vertices of the partition class are labelled with the variables
and negations of variables that occur in the clause (see Figure 1). For each variable x ,
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join each vertex labelled x to each vertex labelled with the negation of x . (Thus each
“issue” is represented by a variable.) Then in the resulting partitioned graph G, an
independent transversal corresponds exactly to a satisfying truth assignment for A.
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z̄

ȳ w z
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w

ū y z̄ w̄ x ū

Figure 1. The graph corresponding to the boolean formula A = (u ∨ y ∨ w) ∧ (ū ∨ y ∨ z̄) ∧ (w̄ ∨ x ∨ ū) ∧
(x̄ ∨ ȳ ∨ z̄) ∧ (ȳ ∨ w ∨ z). The square vertices form an IT corresponding to the truth assignment u = x = T ,
y = z = F , and w can be either T or F .

What help can we then offer to the dean? The best we can do is to provide some
sufficient conditions for an IT to exist in a given vertex-partitioned graph that are not
too hard to check. In the next section we show that if the partition classes are big
enough compared to the maximum degree of the graph, then an IT always exists. In
Section 4 we describe a somewhat more complicated condition for the existence of an
IT, which nevertheless can be applied in certain circumstances. Here we will appeal to
Sperner’s lemma, a result from combinatorial topology.

A very optimistic dean might even want to form many disjoint committees, perhaps
even imagining a perfect world in which the entire faculty could be partitioned into
disjoint committees. This “happy dean” problem is captured by the notion of strong
colouring, which we discuss in Section 3. We end the paper with some remarks and
pointers to other related topics.

2. MAXIMUM DEGREE (LIMITED PERSONAL CONFLICT). In this section
we discover that if no faculty member conflicts with too many others, then the dean can
choose a good committee as long as each department is large enough. Recall that for
a vertex x of a graph G, the degree d(x) of x in G is the number of edges incident to
x . We denote by 1(G) the maximum degree of G; in other words, no faculty member
conflicts with more than 1 others.

Theorem 2.1. Let G be a graph with a vertex partition. Suppose each partition class
has size at least 21(G). Then G has an IT.

Theorem 2.1 first appeared explicitly in [17], and has been applied in a number
of other settings, for example [2, 8, 11, 25]. It is best possible, as Szabó and Tardos
[29] gave constructions of graphs G with partition classes of size 21(G)− 1 that do
not have independent transversals (see also Bollobás, Erdős, and Szemerédi [10], Jin
[23], and Yuster [30] for earlier constructions for certain values of 1). A more precise
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version of Theorem 2.1, giving a bound in terms of 1 and the number of partition
classes m, was given in [20] (see also [7]).

We will derive Theorem 2.1 from a more general result, which gives information
about the structure of edge-minimal graphs that do not have independent transversals.
For a graph G with vertex set V (G) and edge set E(G), and a set of vertices W ⊆
V (G), the neighbourhood of W is 0(W ) = {y : wy ∈ E(G) for some w ∈ W }. When
W = {w} we use the abbreviation 0(w) for 0({w}). We say W dominates every vertex
in 0(W ), and we say W dominates G if 0(W ) = V (G). We use the notation G[W ] to
denote the subgraph of G induced by W , that is, the graph with vertex set W and edge
set {xy ∈ E(G) : x, y ∈ W }. For a set Z of edges we write v(Z) for the set of vertices
incident to edges of Z . Finally for a vertex x in a vertex-partitioned graph we denote
by V (x) the vertex class containing x . Our proof below follows that of [9].

Theorem 2.2. Let G be a graph, and suppose V1 ∪ · · · ∪ Vm is a partition of V (G)
into m independent vertex classes. Suppose G has no IT, but for every edge e the graph
G − e, formed by removing e from G, has an IT. Let e = xy ∈ E(G). Then there exists
a subset S ⊆ {V1, . . . , Vm} and a set of edges Z of GS = G[

⋃
Vi∈S Vi ] such that

1. V (x), V (y) ∈ S and e ∈ Z,
2. v(Z) dominates GS ,
3. |Z | ≤ |S| − 1.

To see that Theorem 2.2 implies Theorem 2.1, let G be as in Theorem 2.1 and
suppose on the contrary that it has no IT. Remove edges one by one from G until the
resulting graph satisfies the assumptions of Theorem 2.2, and let S be the subset of
classes given by Theorem 2.2. The number of vertices that can be dominated by v(Z),
a set of size at most 2|S| − 2, is at most (2|S| − 2)1, but GS contains 21|S| vertices.
Thus conclusions (2) and (3) cannot hold, so this contradiction shows that G must have
had an IT.

Proof. We prove Theorem 2.2 by induction on m. Let G and e = xy be as in the
statement of the theorem. The assertion of the theorem is trivially true when m = 1,
so assume m ≥ 2 and that the statement is true for smaller values of m.

Choose an IT T of G − e. Then x, y ∈ T , since otherwise T would be an IT of G.
We form a new graph H by

• removing the vertex set W = 0({x, y}) from G (note x, y ∈ W ), and
• unifying the remaining vertices in V (x) ∪ V (y) into one new vertex class Y ∗ (and

removing any edges inside Y ∗).

Each class Vi other than V (x) and V (y) just becomes Yi = Vi \W in H . Note that
each class apart from possibly Y ∗ is nonempty because it still contains an element of T .

Case 1: Y ∗ = ∅.

In this case set S = {V (x), V (y)} and Z = {e}. Then v(Z) = {x, y} dominates all of
GS as required.

Case 2: Y ∗ 6= ∅.

First we verify that H does not have an IT. Suppose on the contrary that T ′ is an IT
for H . Let z be the vertex of T ′ in Y ∗. Then by definition of Y ∗, in G we have either
z ∈ V (x) or z ∈ V (y). But then in the first case, by definition of H the set {y} ∪ T ′

is an IT of G, and in the second case {x} ∪ T ′ is an IT of G. This contradiction shows
that H has no IT.
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Now we remove edges one by one from H until we obtain a graph H ′ with no IT
but such that the removal of any edge results in a graph with an IT. Note that each
vertex w in Y ∗ has degree at least one in H ′, since otherwise T \ {x, y} ∪ {w} would
be an IT of H ′. Let e′ be any edge of H ′ incident to a vertex of Y ∗. Then since H ′ has
m − 1 vertex classes, by induction there exists a set S′ of vertex classes (containing
Y ∗) together with a set of edges Z ′ in H ′S′ that satisfies the conclusions (1)–(3). Note
that since H ′ was obtained from H by removing edges we also know that v(Z ′) dom-
inates HS′ . But then setting S = S′ \ {Y ∗} ∪ {V (x), V (y)} and Z = Z ′ ∪ {e} gives the
required conclusion.

In fact it follows from the above proof that the set Z of edges is a matching, that is,
no two edges in Z share a vertex.

3. STRONG COLOURING (THE HAPPY DEAN PROBLEM). Suppose the
dean does indeed have a good choice of committee. What could be better than finding
many committees, say even a partition of the entire faculty into disjoint committees
(assuming, unrealistically here, that the dean wouldn’t expect any faculty member
to be on more than one committee at once)? This delightful situation for the dean
is related to the notion of strong colouring in graphs. A partition of the vertex set
V (G) into independent sets (committees) I1, . . . , Ir is called a proper colouring of the
graph G with the r colours 1, . . . , r , a very well-studied notion in graph theory. Here
however the dean also requires something extra, namely that each class (department)
contains exactly one member of each colour (committee); see Figure 2.

Figure 2. A partition into 3 committees (the white, grey, and black committees) for a faculty with 3 depart-
ments.

Let r and n be positive integers such that r divides n, and let G be a graph with n
vertices. We call G strongly r -colourable if for every partition of the vertex set V (G)
into parts Vk of size r , there exists a proper colouring of G with r colours with the
additional property that each Vk contains exactly one vertex of each colour. If r does
not divide n then we say G is strongly r -colourable if the graph obtained by adding
rdn/re − n isolated vertices to G is strongly r -colourable. It can be shown that if G is
strongly r -colourable then it is also strongly (r + 1)-colourable. The strong chromatic
number sχ(G) of a graph G is defined to be the minimum r such that G is strongly
r -colourable. This notion was introduced independently by Alon [6] and Fellows [13].

Thus the dean could be guaranteed a partition of the entire faculty G into com-
mittees provided the departments have size at least sχ(G) (and, of course, they all
have the same size). If the unlucky dean finds that the faculty is exactly the graph
given in [29] (see Section 2) with departments of size 21(G)− 1 but no independent
transversal, then not even one committee can be found, let alone a partition into com-
mittees. Thus for some graphs sχ(G) ≥ 21(G). It is conjectured that 21(G) is in
fact also an upper bound for every G, but the best known bounds for strong colouring
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in terms of 1(G) are sχ(G) ≤ 31(G)− 1 for every graph [18], and asymptotically
sχ(G) ≤ (1+ o(1))111(G)/4 [19].

Here we give a short proof (by Aharoni, Berger, and Ziv [2], based on [18]) that
sχ(G) ≤ 31(G) for every G. We begin with a slight extension of Theorem 2.1 that
says that in fact, if all departments have size at least 21(G), then the dean can even
choose one specific person on the faculty in advance (who is especially suitable to
chair this committee, say), and still find a good committee that contains this person.

Theorem 3.1. Let G be a vertex-partitioned graph of maximum degree 1 in which
each partition class has size at least 21. Let x ∈ V (G). Then G has an IT contain-
ing x.

Proof. Let V1, . . . , Vm denote the vertex classes of G (again we may remove any edge
that is inside a class). Assume without loss of generality that x ∈ V1. Let G ′ be the
graph, with vertex classes V ′i ⊆ Vi for 2 ≤ i ≤ m, obtained by removing V1 and all
neighbours of x from G. Note that each V ′i is nonempty since |Vi | ≥ 21. If G ′ has an
IT T then T ∪ {x} is an IT of G as required. If G ′ has no IT then remove edges from G ′

until every remaining edge prevents an IT. Let e be an arbitrary edge of the resulting
graph H (which must exist since each class of H is nonempty). We apply Theorem 2.2
to H and e to obtain a subset S of classes and a set of edges Z of size at most |S| − 1
such that v(Z) dominates HS . But v(Z) can dominate at most 21|Z | ≤ 21(|S| − 1)
vertices, and HS contains at least 21|S| −1 vertices. This contradiction shows that
H has an IT, and hence G has an IT containing x .

We represent a proper colouring of G with colours 1, . . . , r by a function α :
V (G)→ {1, . . . , r}, where {x : α(x) = j} is independent for each j .

Theorem 3.2. Let G be a graph of maximum degree 1. Then sχ(G) ≤ 31.

Proof. By adding isolated vertices as necessary, we may assume n = |V (G)| is divisi-
ble by 31. Let a partition P = V1 ∪ · · · ∪ Vm of V (G) into classes of size 31 be fixed,
and suppose on the contrary that there is no suitable colouring of G with respect to
P . Fix a maximum partial colouring (MPC) α of G, that is, a proper colouring using
31 colours of as many vertices of G as possible such that no two vertices in the same
partition class have the same colour. Suppose V1 is a class that contains an uncoloured
vertex x . Then some colour in {1, . . . , 31} is not used in V1; let us call this colour
red. For each i , 2 ≤ i ≤ m, let ri denote the red vertex in Vi (if it exists). Our plan
is to “swap colours” between each ri and another vertex in the same class as ri . For
2 ≤ i ≤ m set Wi = Vi \ {v : α(v) = α(z) for some z ∈ 0(ri )} (if ri does not exist
then Wi = Vi ), so Wi is the set of vertices whose colour could be given to ri . Set also
W1 = V1. Then each |Wi | ≥ 21, so by Theorem 3.1 the graph G[W1 ∪ · · · ∪Wm] has
an IT T with x ∈ T . Modify α by giving colour red to every vertex of T , and for each
i for which ri exists and ri /∈ T , give ri the colour of the element ti of T in Vi . Then
since T was an IT, and by definition of the Wi , this gives a valid colouring α′. More-
over α′ colours all the vertices that were coloured by α together with x , contradicting
the fact that α was an MPC. Therefore a valid colouring must exist for P , and thus we
conclude sχ(G) ≤ 31.

Finding the correct function of 1(G) that bounds sχ(G) from above seems to
be difficult (see Problem 4.14 in Jensen and Toft [22]). For example, it is not even
known whether sχ(G) ≤ 4 for every graph of maximum degree two. By [18] we know
sχ(G) ≤ 5 for such graphs.
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4. A HALL-TYPE CONDITION. The criterion for the existence of an IT that we
describe in this section uses a rather more complicated notion than maximum de-
gree or class size, so we begin with the relevant definition. Let G be a graph, and
suppose V1 ∪ · · · ∪ Vm is a partition of V (G) into m independent vertex classes. Let
S ⊆ {V1, . . . , Vm} be a subset of classes. We call an independent set IS of vertices of
GS = G[

⋃
Vi∈S Vi ] special for S if for every independent subset J of vertices of GS

with |J | ≤ |S| − 1, there exists v ∈ IS such that J ∪ {v} is also independent. We can
think of a special independent set as a “neutral team” for the set S of departments: a
group of mutually nonconflicting members from those departments that can augment
any “small” set of mutually nonconflicting members. (Here “augment” is not quite the
right word, since if IS actually contains an element v of J then J ∪ {v} is of course
the same size as J and satisfies the condition.) Note that the departments from which
the members of IS or J are taken do not figure in this definition.

The reason we refer to the upcoming theorem as a Hall-type condition for the ex-
istence of an IT is by analogy with Hall’s classical theorem for the existence of a
matching of size |A| in a bipartite graph H with vertex classes A and X (here bipartite
means V (H) = A ∪ X , and A and X are disjoint independent sets in H ).

Theorem 4.1. (Hall’s Theorem) A bipartite graph H with vertex classes A and X has
a matching of size |A| if and only if for every subset S of A we have |0(S)| ≥ |S|.

We may now state the main theorem of this section, which is from [4]. Note that
in contrast to Hall’s theorem this is only a one-way implication; for an if-and-only-if
version see Section 5 (where we also show that this theorem implies Hall’s theorem).

Theorem 4.2. Let G be a graph with a vertex partition into independent classes. Sup-
pose that for every subset S of classes, the graph GS contains an independent set IS

that is special for S. Then G has an IT.

The dean may be justifiably dubious that this theorem could possibly be useful,
as checking whether a partitioned graph satisfies the condition (of having a special
independent set for every subset of classes) looks hopelessly complicated. Thus to
convince the dean to read on, we first give a quick application of Theorem 4.2 to a well-
known combinatorial problem. Then in the following subsection we will describe the
proof, which uses Sperner’s lemma. We mention that another application of Theorem
4.2 (and in fact its original motivation) is an extension of Hall’s theorem to hypergraphs
(see [4]).

4.1. Application of Theorem 4.2. Our application is related to the famous “cycle
plus triangles” problem, popularised by Erdős in the 1980s, and finally solved by Fleis-
chner and Stiebitz [14] in 1992 and with a different proof by Sachs [28] in 1993. It asks
whether every union of a cycle C3k of length divisible by three, together with a set of k
disjoint triangles on the same vertex set, has a proper colouring with three colours (see
Figure 3). In the language of Section 3, this is the same as asking whether every C3k

is strongly 3-colourable. This question of Erdős was motivated by an earlier question
of Du, Hsu, and Hwang [12], who asked whether every C3k with an arbitrary vertex
partition into classes of size three has an IT. This problem was also unsolved until the
proofs of Fleischner and Stiebitz, and Sachs, of the stronger statement. Both of these
proofs are ingenious but quite difficult. Here we can give a solution to the question of
Du, Hsu, and Hwang that is almost immediate from Theorem 4.2, and in fact is more
general.
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Figure 3. A 3-coloured cycle-plus-triangles graph on the cycle C9. Compare to Figure 2, which is a different
drawing of C9, with the same three triangles represented as departments.

Theorem 4.3. Let G be a graph of maximum degree two, in which each cycle is of
length divisible by three. Then G has an IT with respect to any vertex partition into
classes of size at least three.

Proof. Fix a vertex partition, and remove any edge that is inside a class. Let S be any
subset of classes. Then the graph GS has at least 3|S| vertices, and its components are
cycles of length divisible by three and paths. Let IS be a maximum independent set in
GS that is spaced three apart. For example, IS could be formed by taking, from each
path component, an end vertex and then every third vertex starting from that end, and,
from each cycle component C3k , an independent set of size k containing every third
vertex. We claim that IS is special for S. To see this, let J be an arbitrary independent
set in GS of size |S| − 1. Since IS is spaced three apart, each vertex of J is adjacent
to at most one vertex of IS . Thus since |IS| ≥ |S|, there is a vertex v ∈ IS such that
J ∪ {v} is independent. Thus IS is special, and so by Theorem 4.2 we know that G has
an IT.

4.2. Proof of Theorem 4.2. First we recall Sperner’s lemma, a basic result from com-
binatorial topology. Suppose F is a triangulation of the (m − 1)-dimensional simplex
6m−1. For each point x of F we denote by f (x) the face of 6m−1 containing x in its
interior. A labelling of the points of F with elements of {1, . . . ,m} is called a Sperner
labelling if

• each vertex of 6m−1 receives a different label, and
• each point x of F receives the same label as some vertex of f (x).

An example of a Sperner labelling is shown in Figure 4. We call a simplex of the
triangulation fully-labelled if it receives all m labels on its vertices.

Theorem 4.4. (Sperner’s Lemma) Let F be a triangulation of 6m−1 with a Sperner
labelling. Then the number of fully-labelled simplices in F is odd.

As is usually the case, the implication of Sperner’s lemma that is useful for us is that the
number of fully-labelled simplices is nonzero. Note that there are three fully-labelled
simplices in Figure 4.

For the proof of Theorem 4.2 we also need to know that certain special triangula-
tions of 6m−1 exist (see Figure 4). The 1-skeleton of a triangulation F is the graph
whose vertices are the points of F , and whose edges are the 1-dimensional simplices
of F .
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Figure 4. A Sperner labelling of a triangulation F of 62 with the properties in Lemma 4.5.

Lemma 4.5. There exists a triangulation F of 6m−1 with the following properties.

(i) If x and y are adjacent in the 1-skeleton of F then one of f (x) and f (y)
contains the other,

(ii) if x has neighbours in the 1-skeleton of F on the boundary of f (x), then these
neighbours are the vertices of a simplex of F.

A proof of Lemma 4.5 can be found in [4]. A different construction was given in [3].

a

b

c

d

V1 α

β

γ

δ

V3

A

B

C

D

V2

Figure 5. The graph G.

Proof. We may now give the proof of Theorem 4.2. Let the graph G with vertex parti-
tion V1 ∪ · · · ∪ Vm be given (see Figure 5 for an example). Let F be the triangulation of
6m−1 given by Lemma 4.5, and let z1, . . . , zm denote the vertices of6m−1. We define a
function g that assigns to each point of F a vertex of G with the following properties.
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(1) For each point x , the vertex g(x) is an element of IS where S = {Vi : zi is a
vertex of f (x)}.

(2) If points x and y are adjacent in the 1-skeleton of F then g(x) and g(y) are not
joined by an edge in G.

(3) The labelling ` of F defined by `(x) = i where g(x) ∈ Vi is a Sperner labelling.

A suitable function g for the graph G in Figure 5 is shown in Figure 6.

a

C

A

A
D

d
A

b
D

c

c

d

A

A
D

Figure 6. The triangulation F with the vertex g(z) of G assigned to each point z.

Our motivation here is as follows. Once we have found g, by (3), the labelling `
is a Sperner labelling. (The labelling ` for the function g in Figure 6 is the labelling
in Figure 4.) Therefore by Theorem 4.4 there exists a simplex W of F that gets all m
labels on its vertices (e.g., the shaded triangle in Figure 6). By (2), the set of vertices
I = {g(x) : x ∈ W } is independent in G. By definition of `, each v ∈ I lies in a distinct
class Vi . Therefore I is an IT of G as required. (I = {c, A, γ } in our example.)

Thus to finish the proof, we define g on the points x of F , in increasing order of
dim( f (x)). For the points in zero-dimensional faces (i.e., the vertices z1, . . . , zm of
6m−1) we choose an arbitrary vertex vi ∈ I{Vi } (which is nonempty by the assumption
of the theorem) and set g(zi ) = vi . This satisfies (1), satisfies (2) by Lemma 4.5(i), and
is consistent with (3).

Now suppose j ≥ 1 and we have defined g on all points in faces of dimension
smaller than j , and possibly some in faces of dimension j , such that (1)–(3) are satis-
fied (see Figure 7). Let x be in a face f of dimension j (e.g., the grey point in Figure 7),
and let S = {Vi : zi is a vertex of f }. (S = {V1, V2, V3} in Figure 7.) By Lemma 4.5(i)
and (ii), if x has any neighbours in the 1-skeleton of F in faces of dimension smaller
than j , then the set U of such neighbours lies in the boundary of f and forms a simplex
of F . Thus |U | ≤ dim( f ) = |S| − 1 and by (2) J = {g(x) : x ∈ U } is independent in
G. (J = {b, γ } in Figure 7.) Thus J is a “small” independent set, and so the special in-
dependent set IS contains a vertex v such that J ∪ {v} is independent. (In our example
suppose IS = {c, d, A, D}. Then v = c is a suitable choice.) Then we set g(x) = v, so
(1) and (3) are satisfied. To check (2), if y is a neighbour of x in a smaller dimensional
face then (2) is satisfied by choice of v. If y is in a face of dimension j (e.g., the white
point in Figure 7) then by Lemma 4.5(i) it must be in f as well. Thus if g(y) has

November 2011] ON FORMING COMMITTEES 785



a

D
c

C

A

A

A
D

b

Figure 7. Defining g on the points of F .

already been defined then g(y) ∈ IS by (1) (g(y) = c in our example) and therefore is
not adjacent to g(x) in G. This completes the definition of g, and hence the proof.

5. REMARKS. The if-and-only-if version of Theorem 4.2 is as follows.

Theorem 5.1. Let G be a graph, and suppose V1 ∪ · · · ∪ Vm is a partition of V (G)
into m independent vertex classes. Then G has an IT if and only if the following holds:
for each S ⊆ {V1, . . . , Vm} there exists an independent set IS of vertices of GS =

G[
⋃

Vi∈S Vi ] such that for every independent subset J ⊆
⋃

U⊂S IU with |J | ≤ |S| − 1,
there exists v ∈ IS such that J ∪ {v} is also independent.

The “only-if” implication is easy: just take IS = I ∩ V (GS) for an IT I . The proof
of the “if” implication is the same as the proof of Theorem 4.2. To see that Hall’s
theorem is a special case, suppose a bipartite graph H as in Theorem 4.1 is given, such
that |0(S)| ≥ |S| for every S ⊆ A. Define a graph G whose vertex set is the set of
edges of H by joining e and f by an edge of G if and only if e and f are incident
to the same vertex of X in H . The vertices of G are then partitioned into |A| classes,
according to the vertex of A they are incident to in H . Thus an IT of G is precisely a
matching of size |A| in H . To verify the assumption of Theorem 5.1, let S be a subset
of the vertex classes. Choose IS to be a set of |S| edges of H , all incident to distinct
vertices in X . This is possible by Hall’s condition on H . Then for any set J of edges
of H of size at most |S| − 1, some element e of IS has a different X -vertex from all
elements of J , and thus J ∪ {e} is also independent. Therefore G has an IT.

The use of topological arguments for transversal-type problems has been taken
much further; see, e.g., [26], [29], and [1]. In [1], Aharoni and Berger obtain wide-
ranging results in the much more general setting of matroids, which have many inter-
esting applications.

The dean now knows that good committees exist in many situations, but suddenly
wants to know something else: how do we actually find these committees? Are there
efficient algorithms for finding them? Each of the proofs of the theorems we have
seen (Theorems 2.2, 3.2, and 4.2) does in fact give a procedure for finding the IT that
the theorem claims exists. Unfortunately though, in each case, the number of steps
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is potentially exponential in the size of the graph. Thus, sadly, we can’t reassure the
dean that finding these committees is always an easy task. In general, the problem of
finding structures that are guaranteed to exist but are apparently hard to find gives rise
to a fascinating branch of complexity theory; see for example [27].
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Mathematics Is . . . and Is Not . . .

“Mathematics is abstract thought, mathematics is pure logic, mathematics is cre-
ative art.”

Paul Halmos, Mathematics as a creative art,
American Scientist 56(4) (1968) 380.

“Mathematics is not a deductive science—that’s a cliché. When you try to prove
a theorem, you don’t just list the hypotheses, and then start to reason. What you
do is trial and error, experimentation, guesswork.”

Paul Halmos, I Want to Be a Mathematician: An Automathography,
Springer-Verlag, New York, 1985, p. 321.

—Submitted by Carl C. Gaither, Killeen, TX
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