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Abstrad

A cdlular automata model that describes as limit cases of his parameters the spread of
contagious diseases modeled by systems of ordinary or partial differential equations is
developed. Periodic feaures of the behavior of human settlement are considered. The model
is built taking into acaount the range of motion of the dements of population. For small
(large) values of this range, the behaviors described by partia (ordinary) differential equation
models are reproduced. Emphasis is done in the study of those scenarios in which the aove

mentioned equations fail to describe. Some interesting behaviors in these cases are reported.



1 Introduction.

One of the first tasks that faces a theoretician who wants to interpret the time evolution of a
complex system is the construction of a model. In real systems, many of their features are
likely relevant, but not al of them, however, are included in the model. Although this lack,
such simplified description should often be very helpful in developing the necessary intuition
for the understanding of the behavior of real complex systems.

Most models in population dynamics, spread of diseases, rumors and news are formulated in
terms of differential equations, both partial and ordinary. The difference between the types
of equations used is strongly related with the assumptions made about the way members of
population move in the spatial region they belong to. If the model assumes a homogeneous
mixing of the different classes of individuals (infected, susceptible, removed, etc.) then,
systems of ordinary differential equations are used. If short range character in the motion is
assumed, that is, if the mean length of the motion of members of population is small respect
to the size of the spatial ensemble where they live, then the spread of some diseases behave
as diffusion processes and partial differential equations are used in their modeling. In both
cases the assumption of random motion is made for the individuals.

Two objections could be made about these assumptions. First, the diffusive or perfect
mixing hypothesis is not quit fulfilled always. Second, the motion of individuals of some
gpecies (human among them) is not random as assumed in the hypothesis of the above
mentioned models. At least for human population it is far to be true. A lot of people go to

school or to work and later go back home daily, therefore periodic motion seems more



praiseworthy that random. Many other species (as foxes and other mammalians) have aso
motion routines.

Besides, few have been said about those transmission processes that do not fit very well in
the mentioned paradigms. The aim of this work is develop a céllular automata model, which
contains as limit cases the diffusive and perfect mixed behaviors mentioned above. This
model depends on two parameters, the mean path length motion of individuas A and a

measure of the strength of the cntagion process p. Tuning the parameter A we obtain the

diffusive or the perfed mixed behaviors and also describe those scenarios hard to
charaderize with differential equations. The structure of the paper is as follows. In Sec 1
we develop the cdlular automata model. In Sec 2 dscussthe relationship of A and the limit
cases described by differential equation models. In Sec 3 discussthe result of simulations

and Sec 4 isfor conclusions.
2 The model.

Céllular automata provide simple models for a variety of complex systems containing a large
number of identicd elements with locd interadions. A cdlular automata wnsists of a lattice
with a discrete variable & ead site, evolving at discrete time steps. At a given time, the
value of the variable & one ste is determined by the values of the variables at the
neighboring sites. The neighborhood could include the site itself. The evolution rule is
synchronous, that is, al sites are updated simultaneoudly. Cellular automata ae therefore,
discrete (in space ad time) dynamicd systems. For a review of the main properties se for
examples Gutowitz, 1990 Manreville et al., 1989and Wolfram, 1983

Site exchange cdlular automata ae aitomata networks whose rules consist of two subrules.

The first, applied synchronoudly, is a locd rule inspired in the Conway's '‘Game of Life. It



describes the local behavior of the transmission processes (contagion process, spread of
news and rumors). We call this type of rules contagion rules although their validity is far
beyond the scope of infective processes. The second, which has been sequentialy applied,
describes the motion of a fraction of individuals. We call this type of rules transport rules.
These models have been extensively studied (Boccara and Cheong, 1992, Boccara and
Cheong, 1993 and Boccara et al., 1994) in the last years.

Let Z be the set of the integer numbers and A 0 Z? be a lattice. The set A represents the
gpatial environment where the population lives. At atime step t a site of A is either empty
or occupied (representing an individual in some subclass of the population). The way the
transport subrules have been used is as follows (see Boccara and Cheong, 1992, Boccara
and Cheong, 1993 and Boccara et al., 1994): Each time step, an occupied site selected at
random is swapped with another site (empty or occupied) also selected at random. This

operation is repeated mc(t)N times, where N isthe tota number of sites, c(t) the density

of nonzero sitesat time t and m is a parameter caled the degree of mixing. It is important
to note the stochastic character of the process. These rules fail to explain why in a human
population, with rigid motion schedules dictated by the day routine the spread of epidemics

behave under certain conditions as perfect mixed or perfect diffusive.

In order to fill this gap we device another type of transport subrule. Let A 0 Z? whose
vertices are occupied by members of population. Let Q = {0, 1..., IO}A be the set of element
of theform (a; ;) ;- Where aD{O, 1..., p} represents to which subclass they belong and

(i, j) isaposition in the lattice. For example, in an epidemic process these subclasses could



be empty, susceptible, infective, removed. The set Q contains all the possible configurations
over the lattice A . Hence we call it configuration space.
Let 7:Q - Q beafunction which satisfy the following conditions:

a) Let (T(a;;)))ijm be theimage of the element (a; ;) ;mn Under application T .
Thenif a; ;) #0,then 7(a ;,) =0.
b) Forevery x,, %, OA, x #X, suchthat a,,a, #0,then7(a,)#7(a,).

The above statements deserve an explanation. Condition @ means that every non-empty
element of the lattice can only be moved to an empty site. Condition b) means that two
occupied sites cannot go to the same empty site. These are reasonable statements. We
observe in Nature that elements of population by means of motion could be placed close
together but never (except possibly in Manhattan Iland) one over the other.

We call function 1 atransport rule. We emphasize the synchronous character of this type of
rule. In Fig. 1 we could see a schematic representation of a transport rule

Let XOQ be an element of Q. We denote by O(X) the subset of A of non-empty
positions, i.e.: O(X) ={xOA, a, # 0} and by N(X) the number of elements of O(X). We
define the number:

1
N(X) 4

A=

D;XP(X,T(X)) )
)

where:  p(x,7(X)) is the Euclidean distance between the non-empty position x and his

destination by means of 7. Wecall A the mean path length of motion of individuals.



Let define now the kind of local rules, which describe the transmission process (contagion,
spread of rumors, etc.). Although we use concepts related with epidemic processes, the
validity of definitions exposed below are far beyond this narrow framework.

Let take Q ={0,1, 2}", where 0 means empty, 1 susceptible and 2 infective. Non-empty
susceptible sites become infective by contact, i.e., a susceptible may become infective with a
probability p if and only if it is in the neighborhood of an infective. More precisely, during
one time step, the probability that a susceptible having n infected neighbors become
infected is 1—(1- p)". This hypothesis neglects latent periods, i.e., an infected susceptible
become immediately infective. In Fig. 2 we could see a situation as described above. Some
refinements on the transmission process just defined will be made along the paper.

Let £,:Q - Q be the function (which depend on probability p) representing the above

mentioned transmission process. We call contagion process to the time trajectory of an

element X 0Q by the application T=T"ogoT o

{T[n }nDN = {nn (X)}nDN (2)
Although this set up seems completely deterministic, it has a stochastic component. The

function ¢, could assign in each realization different elements ¢,(X) 0 Q to every element

X 0Q. Hence the Eq. (2) should be understood as the set of realizations of the contagion
process. The configuration X is the initial conditions of the process. It encloses all the
information at time t =0. Models in ordinary or partia differential equations also use some
information encoded in X in form of initial and/or boundary conditions. Notice that the
application 71 represents the daily exposure of the elements of the population. They could be

infected or not at their original sites (&), later they move (1) to their destination, being



exposed or transmitting the disease there (&) and later go back to their original positions

(t7). We oversimplify the process assuming that the only situations where the contagion
takes place are at their origina position or destination, i.e., homes, schools, jobs or any
other socia activities for human populations. In this case, exposure to epidemics during
transportation (subway, bus, etc.) is neglected here. Similar assumptions can be made in
animal diseases. Consider, for instance, rabies epidemic among the foxes. Rabies is a vira
infection of the nervous central system. It istransmitted by contact and is invariably fatal. As
stated in Kallen et al., 1985 foxes acquire the disease mainly during hunting hours or at their
dens.

3 Limit cases.

In this Section we show how for different values of the parameter A defined in Eq. (1), we
could obtain the extreme behaviors of perfect mixing and perfect diffusion. All the
smulations referenced in this Section were done with a lattice A of 150x150 sites with half

of them non-empty. The transmission process £, will be as described in Sec. 2: there will be

only susceptibles and infectives. More sophisticated scenarios are studied later. The total

populationis N =11250. We always start the simulation with only one infective.
3.1Largevaluesof A.

If the parameter A islarge enough, then a perfect mixed behavior could be observed. In Fig.
3 is shown the pattern of infectives for several different values of t. The length of average
path is A =80. Because the lattice size is 150, the value of A is extremely high and the
perfect mixed behavior is easily observed. A classical differential equation model for this

scenario is:;



di) )
%dt = al (1)(11250 - | (t)) @

H()=1

where | (t) represent the number of infectivesin the instant t and a is a constant related
with the morbidity of the disease. The higher a, the higher the growth rate of I(t). We
have observed a strong relationship between the constant a and the probability p of the
transmission process ¢, . InFig. 4 isshown agraph of a versus p. Each point of the curve
is obtained with 10 simulations with the same value of p. The time interval was [0, 250] .
In each simulation the values of infectives 1, 1,,...,1,, were introduced in a linear
regression using Eg. (3) to obtain the value of a. The process was repeated 10 times and
the average is plotted.

3.2 Small valuesof A.

With small values of A the cellular automata model behave as perfect diffusive. In Fig. 5 the
pattern of infectives is shown for several different values of t. Notice the formation of a
wave front, which grows until cover the entire lattice. This is in agreement with other
results. Kallen et al., 1985 added a diffusion term in the rate equation of infectives in the
model proposed by Kermack and McKendrick (see Kermack and McKendrick, 1927 for
details) in order to take into account the dispersion of rabid foxes. The new system of

equations admitted traveling wave front solutions. Notice that if only exist susceptibles and

infectives then, an elementary differential equation model for this scenario is.

ou(x, y,t)

T DO%u(x, y,t) +au(x, y,t) @1 -u(x, y,t)) 4



where u(x, y,t) represent the density of infectivesin the position (x,y) intheinstant t. The
constant D is the diffusion and the constant a is related with the morbidity of the disease.
We have observed an interesting behavior of D with respect to A . In Fig. 6 isshown agraph
of D versus A . Each point of the curve is obtained with 10 simulations with the same value
of A. The procedure to construct the pointsis as follows: in order to find an approximation
of u(x,y,t), the lattice A was divided in 15x15 sguares of 10x10 sites. On each square
the number of "infected" sites were counted and divided by 100. This is an approximation of
u(x,y;,t) inthe square centered at the point (x ,y;) at time tJ[0,250]. All these values
of u areintroduced in a nonlinear regression using Eg. (4) to obtain D and a . This process
was repeated 10 times and the average values were plotted. Notice that as A grows the size
of the error bars are larger. This fact is consequence of the breaking of the diffusive regimen.
For values of A > 30, the processis no longer diffusion.

The result of the Sec. 3.1 and Sec. 3.2 show that our cellular automata model could capture
the main features of extreme cases described by differential equations, reported in the
literature. In the following Section we study the properties of the "intermediate” zone for the

valuesof A.
4 The behavior for intermediate values of A.

In this section we report our findings in the behavior of the site exchange cellular automata
model for the values of A which are too large to yield diffusive behavior and too small to
produce perfect mixing. That is what we call "intermediate zone" in the above section.
Notice that for these values of parameter A the differential equation models fail to describe

the behavior of the process.



We aso add a new ingredient to our model, the length d of the infective period, i.e., a
susceptible, which becomes infective at time t, becomes again susceptible at time t +d . Let

consder first a transmission process €, as defined in Sec. 2, but assuming also that an

infective become again susceptible d time steps after she or he acquired the disease, i.e., we
are assuming that the infection period has length d .

In Fig. 7 is shown the time series of infectives for d =5, p=0.4,A =45. We report a

scaling property for this time series. Let denote by s, =

|y = 1,| the absolute value of the
difference between two consecutive elements of the time series. Let N(s) be the cumulative
number of s, i.e., how many times the value s appear in the {s[} series. We observe that:

NGO = 5)
S

It means that a small difference between two consecutive values in the time series of
infective has a higher probability to appear than a larger one. We also found a strong

correlation between 6 and p. In Fig. 8 is shown the graph of N(s) versus s for a
realization of the automata model. Notice that we plotted N(s) for a redization, not for
averaged values. In all cases studied the fitness of N(s) to a power function was good. In

the inbox plot of Fig. 8 are shown the averaged (over 10 smulations) values of & versusthe

corresponding values of p. We confer a great practical value to the last result. It could
alow the estimation of probability p in real epidemic process having an accurate record of

daily reported cases for several apparition of the disease.
We also studied periodic properties of the infectives time series. Our main tool was

frequency domain analysis. Fourier spectra (see Percival and Walden, 1993). is widely used
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in time series analysis, because the visual representation in the frequency domain can more
easlly reved patterns which are harder to discern in the primary data, for example, intricae
periodicd behavior. We use here Fourier transform of infedives time series to deteda
periodicd feaures of that function. From now on, we cdl power spectra of infedives time

series to the product of Fourier transform of that function by its complex conjugate:

2
i ﬂEt
L

Z It

where 6 is a monstant related with the sample frequency and L is the number of data

S(k) =96 (6)

available for 1(t).

We studied the changes in the periodic behavior of | (t) with resped to the order parameter

u:ad. We cdculate the power spedrum of severa infedive time series with

u1[0.06,0.6] . The results are presented in Fig. 9, where a behavior resembling period-
doubling scenario is gown. It is well known that period doubling behavior is a posshle
scenario of chaotic processes. Evidence of this behavior in red contagion processhave been

reported in the literature.
5 Conclusions.

We have developed a cdlular automata model for the spread of epidemics, rumors and news
in a population of moving individuals. Our model depends on a parameter A, which
represents the means length of the motion of individuals in population. We reproduced with
a suitable tuning of this parameter the limit cases of perfed mixing and perfed diffusion
often described by systems of ordinary and pertial differential equations respedively. We

also could study those cases, which the &ove-mentioned models fail to describe. With these

11



values of A and a suitable tuning of p and d we reported some evidence of period

doubling behavior and other interesting properties. The authors are thankful to G. Cocho, O.
Miramontes and P. Miramontes for their helpful comments. This work was partially (R.M.)

supported by CONACY T, Mexico.
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Figur e captions.

Fig. 1: A schematic transport rule. Notice that some sites remain unchanged.

Fig. 2: A schematic contagion rule.

Fig. 3: Deployment of contagion processfor A =80 for severa values of t. Figure @)
correspondto t =10, b)to t =30 and c) to t =50.

Fig. 4: Rate of increase of infectives a versus the probability of contagionrule p.

Fig. 5: Deployment of contagion processfor A =15 for several values of t. Figure a)
correspondto t =10, b)to t =30 and c) to t =50.

Fig. 6: Diffusion coefficient D versus A .

Fig. 7: Times series of infectivesfor A =45 and d =5.

Fig. 8: N(s) v.s. s. Notice the power law behavior. In the inbox is plotted the exponent of

the power law fit with respect to p.

Fig. 9: Power spectrum of infectives time series for different values of u. Figure @)

correspond to A =0.0699, b) to A =0.3257 and c) to A =0.5896 . Notice the evidence of

period doubling.
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