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Abstract

A strong analogy is found between the evolution of localized disturbances in

extended chaotic systems and the propagation of fronts separating different

phases. A condition for the evolution to be controlled by nonlinear mecha-

nisms is derived on the basis of this relationship. An approximate expression

for the nonlinear velocity is also determined by extending the concept of Lya-

punov exponent to growth rate of finite perturbations.
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In the last years the study of front propagation in spatially extended systems has known
a renewed interest, due to the relevance of spreading fronts for the emergence of spatial
structures (patterns) in non-equilibrium systems [1]. In particular, simple reaction-diffusion
models seem to be appropriate for describing propagation phenomena in different fields, such
as fluid dynamics, liquid crystals [2], epidemics [3], chemical reactions, crystal growth [4]
and biological aggregation [5]. Several mathematical models which describe the spreading
of a disturbance into unstable (or metastable) steady states have been studied in detail, in
order to uncover the mechanisms underlying the propagation of fronts [6–9].

The main result of these studies can be summerized with reference to the one dimensional
equation

ut = uxx + g(u) (1)

where g(u) ∈ C1[0, 1], g(0) = g(1) = 0. If g > 0 in (0, 1), then u = 0 is an unstable fixed
point, while u = 1 is a stable one. In this case, any sufficiently localized initial perturbation
u(x, t = 0) generates a propagating front joining the unstable to the stable state (Fig.1). A
linear stability analysis shows that the front can have any speed vF larger than a minimal
value vL which depends on the behavior of g(u) at u = 0. However, very often velocities
larger than vL require special initial conditions to be realized, so that the “physical” speed
is exactly vF = vL. In the following we shall call vL the linear velocity. Whether it is selected
or not depends on the behavior of g(u) for u > 0. In particular, it has been shown in [10]
that convexity of g(u) is sufficient for vF = vL. Intuitively, we can say that, if g′(0) > g′(u)
for all u > 0, the front is “pulled” by the initial growth of u and, otherwise, it is “pushed”
by the faster growth of finite u [11].

In the present Letter we consider a different problem, namely the propagation of some
perturbation in a chaotic system (Fig. 2). Thus the front does not separate two different
phases, since the system is chaotic (and hence unstable) on both sides of the front. More
precisely, we consider two realizations of a 1-d coupled map lattice (CML) [12] which differ
only locally in the initial conditions, and we watch the spreading of the relative deviation.
In spite of the obvious difference with the situation discussed above, we will show that
there are surprising similarities. In particular, the derivative g′(u = 0) will be replaced
by the Lyapunov exponent. In order to formulate (heuristically) a condition equivalent to
g′(0) > g′(u), we will introduce a new indicator of the sensitivity to finite perturbations. We
shall see that there exists again a minimal velocity vL, and that the “physical” velocity vF

can be larger that vL only if this indicator grows with the perturbation.

The CML is written as

xn+1
i = f(x̃n

i ) (2)

x̃n
i = (1 − ε)xn

i +
ε

2
(xn

i−1 + xn
i+1) (3)

where i and n indicate the discrete space and time variables, and ε the diffusive coupling
parameter. We use periodic boundary conditions on a chain of length L, xn

i = xn
i±L. The

function f(x) is assumed to be a map of some interval into itself. We have chosen this
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for numerical convenience. We are confident that the basic features can be generalized to
continuous systems. Disturbances spreading with vF ≥ vL in CMLs have been observed for
the first time in [13]. Here, instead of considering the map G(x) studied in [13], we shall
discuss two simpler examples: the “generalized Bernoulli shift”

f(x) = rx mod 1 (4)

and the circle map

f(x) = (x + α) mod 1 . (5)

The propagation of infinitesimal disturbances is governed by the evolution in tangent space,

un+1
i = f ′(x̃n

i )
[

(1 − ε)un
i +

ε

2

(

un
i+1 + un

i−1

)

]

(6)

where f ′ = df/dx. Instead of considering an initially localized perturbation, we shall first
refer to a perturbation decaying exponentially for i → ∞,

u0
i ∼ e−µi . (7)

Its temporal growth depends on µ,

un
i ∼ eλ(µ)n−µi . (8)

The position of the front is defined as the rightmost site where un
i is larger than some

arbitrarily fixed constant O(1). This gives for its velocity

V (µ) =
di

dn
=

λ(µ)

µ
. (9)

For an absolutely unstable system we have λ(µ = 0) > 0 , 1 so that V (µ) diverges for
µ → 0. This is intuitively obvious: an almost flat front will appear to move with arbitrarily
large velocity. On the other hand, it can be shown [14] that, for nearest-neighbour coupling,
V (µ) → 1 for µ → ∞.

We now want to determine the speed vL when the initial perturbation is localized near
i = 0 and still infinitesimal (the case of finite perturbations will be discussed later). Since
we expect that any front will have a leading edge where it is infinitesimal and exponentially
decaying with some exponent µ0, we have vL = V (µ0).

1Throughout this letter, all Lyapunov exponents are maximal ones, and all perturbations are

assumed to be typical so that they grow with maximal rate. There exist of course also atypical

perturbations the growth of which is governed by non-leading Lyapunov exponents [14], but they

will be neglected.
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To determine µ0 and vL, we need the (maximal) co-moving Lyapunov exponent Λ(v) [15].
For a given v, this gives the local growth rate of a disturbance in a reference frame moving
with velocity v, un

i ∼ eΛ(v)n if i = vn. The selected front speed is such that a disturbance
neither grows nor decreases at vL, i.e. Λ(vL) = 0. In order to express this in terms of λ(µ)
and µ, we recall that they are related to Λ(v) through the Legendre transformation [16,17]

Λ(v) = λ(µ) − µ
dλ(µ)

dµ
; v =

dλ(µ)

dµ
(10)

Therefore, the derivative of V (µ) is directly related to the co-moving exponent,

dV

dµ
=

1

µ

(

dλ

dµ
− λ

µ

)

= −Λ(v)

µ2
. (11)

Using Λ(vL) = 0, we now see that dV/dµ = 0 at a value µ0 for which v(µ) = vL, and since
Λ(v) is convex (being a Legendre transform), this will be the unique minimum of V (µ).
Finally, we can write

vL =
λ(µ0)

µ0

=

(

dλ(µ)

dµ

)

µ=µ0

. (12)

Thus as long as we can consider a perturbation as infinitesimal, it is the lowest possible
speed which is selected, which justifies us calling it the “linear velocity”.

This expression for vL is identical to that found in Ref. [8] for the propagation into
unstable steady states, provided that λ(µ) and µ are identified with the complex part of the
frequency and of the wavevector, respectively. Thus, the relation λ = λ(µ) plays essentially
the role of a dispersion relation [14,17].

Recalling that for closed systems, Λ(v) is always a decreasing function (limiting us to
v ≥ 0 for symmetry reasons) and that Λ(v = 0) = λ(0) [15], we can readily deduce from
Eq. (12) that vL is defined if and only if the system is absolutely unstable, i.e. λ(0) > 0.
As can be seen from Fig. 3, V (µ) steadily increases with µ and V (µ → 0) → −∞ if the
local dynamics is not chaotic (λ(0) < 0). A negative velocity indicates that the perturbation
regresses instead of propagating: the system is absolutely stable.

Finally, we consider localized and finite initial perturbations. We call the corresponding
front velocity vF. Since any front will have an infinitesimal leading edge, we have to expect
that vF = V (µ∗) for some value µ∗. It is hard to see how µ∗ could be smaller than µ0,
whence we just have to distinguish two possibilities: the “linear” (or “pulled”) case with
µ∗ = µ0 and vF = vL, and the “nonlinear” (or “pushed”) case with µ∗ > µ0, vF > vL.

In order to see which case is realized in a particular model, we simulate two chaotic
configurations {xn

i } and {yn
i } initially differing in a limited region of the chain (typically 50

sites in chains of ≥ 1024 sites) and coinciding elsewhere. The front position after n iterations
is defined as

R(n) = max{i : |xn
i − yn

i | ≥ θ} . (13)

where θ is a preassigned threshold << 1. The front velocity is then defined as
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vF = lim
n→∞

R(n)

n
(14)

We have verified that vF is independent of the amplitude of the initial perturbation δ0 and
of the value of the threshold θ when they are varied from 10−14 to 10−1.

In this way we measured vF and vL for several CML models and couplings. As expected,
we found always vF ≥ vL. In most cases, vF = vL (this was found for logistic, cubic and tent
coupled maps for all tested values of the parameters and of ε), but we have also identified a
class of maps (namely, models (4), (5) and the map G studied in Ref. [13]) where the strict
inequality vF > vL is found to hold. The common characteristic of these maps is that f ′(x)
exhibits a narrow peak (or even a δ-singularity). Moreover, in system (4) [18] and in Ref.
[13] a transition between the two above regimes is found upon varying a parameter of the
map. For map (5), such a transition cannot occur since vL is always zero, the map being
marginally stable. However, also in this case we can observe a finite vF for a range of α and
ε values. This fact stresses even more that this propagation mechanism is not related to
local chaoticity, i.e. to sensitive dependence on local and infinitesimal perturbations. The
unpredictability resulting from the spreading of perturbations does not result here from local
production of entropy but from entropy transport.

In order to determine when the nonlinear mechanism is likely to prevail against the
linear one, we reconsider a heuristic conjecture of van Saarlos [8] for fronts propagating into
unstable steady and homogeneous states. He observed that vF > vL only if the local growth
rate of small but finite perturbations increases with their amplitude.

In our case the linear local growth rate of perturbations is represented in the limit of
small coupling ε by the Lyapunov exponent of the single map λ0, which can be defined as

λ0 = lim
δ→0

〈

log

∣

∣

∣

∣

∣

f(x + δ/2) − f(x − δ/2)

δ

∣

∣

∣

∣

∣

〉

=< log |f ′(x)| > (15)

where < . . . > is the average over the invariant measure of the map. If we are interested in
the evolution of finite disturbances ∆ the average growth-rate will be given by

I(∆) =

〈

log

∣

∣

∣

∣

∣

f(x + ∆/2) − f(x − ∆/2)

∆

∣

∣

∣

∣

∣

〉

=< A(x, ∆) > . (16)

Obviously, lim∆→0 I(∆) = λ0. Let us first consider map (4). There, we have

A(x, ∆) =

{

log
[

(1−r∆)
∆

]

, if x ∈ [1/r − ∆/2, 1/r + ∆/2] ≡ C(∆, r)

λ0 = log(r) , otherwise

Therefore, the indicator I is given by

I(∆) =
∫

x∈C
dx ν(x) log

[

(1 − r∆)

∆

]

+
∫

x 6∈C
dx ν(x) log(r) (17)

where ν(x) is the invariant measure.
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The expression is more compact for the circle map, because there λ0 = 0 and the invariant
measure is flat, so that

I(∆) = ∆ log

[

(1 − ∆)

∆

]

. (18)

This is positive for 0 < ∆ < 1/2, and is an increasing function at small ∆. Therefore at
small but finite ∆ we have a positive growth-rate in spite of the stability against infinitesimal
perturbations. This is always the case when we consider maps like (4), (5) or G. Conversely,
for all the other maps we looked at (i.e., logistic and tent maps), we found I(∆) < λ0 for
all finite ∆-values (see Fig. 4). Accordingly, we can conjecture that whenever a nonlinear
propagation mechanism has been observed, the quantity I(∆) is an increasing function at
small ∆. If, instead, I(∆) < λ0 for any ∆, propagation in the correspondig CML will
take place with velocity vF = vL for any coupling costant ε. Nonlinear propagation of
perturbations can arise only if finite disturbances are, in average, amplified faster than
infinitesimal ones, i.e. by a factor > exp[λ0] during a single iteration.

In order to give a quantitative estimate of v
F

we have to take into account the coupling
between different sites. We have seen that the linear velocity is the minimum value of
V (µ) which is obtained from the growth rate λ(µ). If vF > vL, the exponential slope µ∗

of the leading edge is larger than the value µ0 where V (µ) is minimal. The main effect of
nonlinearities is to change λ(µ) into a function λ(µ, ∆) which coincides with it along the
leading edge of the front (where ∆ is infinitesimal) but becomes different as ∆ becomes large.
Our main assumption now is that we have just to replace λ(µ) with a suitable average over
λ(µ, ∆). The average has to be taken over the ∆ range where I(∆) > λ(0) and which thus
“pushes” the front.

The main problem in this assumption is of course that ∆ is a fluctuating quantity. In
order to make it practically applicable, we have to resort to a mean field approximation.

By assuming that the perturbation decays exponentially as

∆n
i = e−µiΦn

i , (19)

from Eqs.(2) and (3), we find that it evolves in time according to

∆n+1
i = |f(x̃n

i +
1

2
∆̃n

i ) − f(x̃n
i − 1

2
∆̃n

i )| = ∆̃n
i eA(x̃n

i
,∆̃n

i
) (20)

where

∆̃n
i = e−µi

(

(1 − ε)Φn
i +

ε

2
(Φn

i−1 eµ + Φn
i+1 e−µ)

)

. (21)

We now introduce a mean field approximation by assuming that Φn
i is independent of i, and

A(x, ∆) equal to its average over x. This allows us to rewrite Eq. (20) as

Φn+1 = Φn [(1 − ε) + ε cosh(µ)] eI(∆) (22)

Performing an average over the range D of ∆ where I(∆) > 0, we obtain an effective
Lyapunov exponent
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λc(µ) = log [(1 − ε) + εcosh(µ)] +
1

|D|
∫

D
d∆ I(∆) , |D| =

∫

D
d∆ (23)

and, in analogy with the linear case,

Vc(µ) =
λc(µ)

µ
. (24)

Just like V (µ), Vc(µ) is a convex function with a unique minimum. It is thus natural to
assume that the selected velocity for the front will be given by the minimum of (24)

v
F

= minµVc(µ) . (25)

The value µc where Vc(µ) is minimal would be equal to µ∗ if Eq. (19) would hold with the
same µ in the leading edge and in the pushing region. This, however, need not be the case
and we indeed found µc < µ∗ in general.

In Fig. 5, the numerical results are reported toghether with the predictions obtained
from Eq. (25) for the circle map with two different values of α. The agreement between
simulation and theoretical results is reasonably good for large coupling ε. However, it can
be seen that the front propagates only for ε larger than a certain threshold εc(α). Equation
(25) does not predict such a transition which can be attributed to the particular structure of
the invariant measure for model (5) for ε < εc(α). The invariant measure becomes extremely
irregular below threshold and this does not allow any more a ”synchronization” of the motion
of the disturbances, as necessary to observe a front propagation. Obviously, this cannot be
recovered from a mean field analysis. An analogous comparison for map (4) with ε = 1/3 is
reported in Fig. 6. The overall behaviour of the velocity provided by Eq. (25) is in agreement
with that of the measured vF. More precisely, the theoretical predictions are larger than vL

for any value of the parameter r.

In conclusion, we have demonstrated that the propagation of perturbations in chaotic
systems is very similar to the propagation of fronts between steady states. This includes
the possibility of “nonlinear” selection of velocity. We have verified that an extremely crude
estimate of the influence of nonlinearities on the velocity gives surprisingly good agreement
with simulations of several coupled map lattices.
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FIGURES

Fig.1: A typical front connecting an unstable with a stable region.

Fig.2: A typical chaotic state (x), a perturbed state (y), and their difference. The front
separates the perturbed from the not yet perturbed region.

Fig.3: Velocities V (µ) versus µ for the coupled piecewise linear maps (4) with ε = 1/3.
The solid curve refers to the absolutely unstable situation (r > 1), the dashed line to the
marginally stable case (r = 1) and the dash-dotted one to the absolutely stable case (r < 1).

Fig.4: Nonlinearity indicator I(∆) for the single maps: logistic map at the crisis (solid line);
tent map (dashed line); circle map (5) with α = [1 − (

√
5 − 1)/2] (dotted line); generalized

Bernoulli shift (4) with r = 1.10 (dash-dotted line).

Fig.5: Front velocities for circle coupled maps as a function of the coupling parameter ε:
measured velocity vF (crosses) and theoretical prediction vT (circles). Figure (a) refers to a
map parameter α = [1 − (

√
5 − 1)/2] and (b) to α = [1 − (

√
5 − 1)/2]/8.

Fig.6: As in Fig. 5 for coupled piecewise linear map with r > 1 (ε = 1/3). In this case the
linear velocity vL is reported too (solid line), since it is positive.
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