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abstract: A greater understanding of the rate at which emerging
disease advances spatially has both ecological and applied signifi-
cance. Analyzing the spread of vector-borne disease can be relatively
complex when the vector’s acquisition of a pathogen and subsequent
transmission to a host occur in different life stages. A contemporary
example is Lyme disease. A long-lived tick vector acquires infection
during the larval blood meal and transmits it as a nymph. We present
a reaction-diffusion model for the ecological dynamics governing the
velocity of the current epidemic’s spread. We find that the equilib-
rium density of infectious tick nymphs (hence the risk of human
disease) can depend on density-independent survival interacting with
biotic effects on the tick’s stage structure. The local risk of infection
reaches a maximum at an intermediate level of adult tick mortality
and at an intermediate rate of juvenile tick attacks on mammalian
hosts. If the juvenile tick attack rate is low, an increase generates
both a greater density of infectious nymphs and an increased spatial
velocity. However, if the juvenile attack rate is relatively high, nymph
density may decline while the epidemic’s velocity still increases. Ve-
locities of simulated two-dimensional epidemics correlate with the
model pathogen’s basic reproductive number ( ), but calculatingR 0

involves parameters of both host infection dynamics and theR 0

vector’s stage-structured dynamics.

Keywords: Lyme disease, population structure, reaction-diffusion
model, spatial dynamics, spatial velocity.

A basic ecological property of an emerging disease, or of
any invasive species, is the speed at which its range expands
(Murray et al. 1986; Andow et al. 1990; Holmes et al.
1994). An epidemic’s spatial velocity depends on mech-
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anisms of pathogen dispersal and on the population dy-
namics of infection transmission (van den Bosch et al.
1990; Mollison 1991; Clark et al. 2001). We model a vector-
borne disease where the vector’s stage structure affects the
transmission dynamics and so affects epidemic velocity.

Most models for vector-borne disease ignore vector
population dynamics. If the vector’s lifespan is much
shorter than its host’s, the frequency of pathogen-infected
vectors may equilibrate quickly (Aron and May 1982), and
disease among hosts can be predicted without modeling
the vector explicitly (Dye and Williams 1995). But if host
and vector have a similar lifespan, infection-transmission
rates and the velocity at which disease spreads depend on
the coupled dynamics of host and vector densities (Feng
and Velasco-Hernández 1997). Furthermore, for certain
vector-borne diseases, infection transmission requires that
the vector progress through a developmental transition.
For these cases, the vector’s stage-structured dynamics
should govern the spatial expansion of infection (Neubert
and Caswell 2000).

An example is the cycle of infection associated with
Lyme disease (Barbour and Fish 1993; White 1998). The
2-yr life cycle of the vector, a tick, scales similarly with
the lifespan of its mammalian hosts. Larval ticks acquire
the infection at the first blood meal, progress to the nymph
stage, and then may infect a host at the second meal. So,
analyzing the spread of infection suggests consideration of
the vector’s stage-structured population dynamics (Awer-
buch and Sandberg 1995; Van Buskirk and Ostfeld 1995;
Caraco et al. 1998).

In the northeast United States, the geographic range of
human Lyme disease has increased steadily (White et al.
1991) as high rates of infection expand from disease foci
(Glavanakov et al. 2001). We model the advance of the
natural infection cycle as a reaction-diffusion process. The
model may help identify factors influencing the rate at
which the disease spreads, and more generally, it empha-
sizes that population structure may affect the spatial dy-
namics of ecological interactions (Diekmann et al. 1998;
Neubert and Caswell 2000).
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Table 1: Parameters of the reaction-diffusion model

Parameter Definition

rM Maximal individual birthrate in mice
KM Carrying capacity for mice
mM Mortality rate per mouse
DM Diffusion coefficient for mice
DH Diffusion coefficient for deer
r Maximal individual birthrate in ticks
c Crowding coefficient in ticks
mL Mortality rate per questing tick larva
mV Mortality rate per feeding tick larva
mN Mortality rate per tick nymph
mA Mortality rate per adult tick
a Attack rate, juvenile ticks on mice
g Attack rate, tick nymphs on humans
b Susceptibility to infection in mice
bT Susceptibility to infection in ticks
j Rate at which larvae complete first blood meal
y0 Standardized velocity of wave front

Lyme Disease: Ecological Background

Lyme disease in the northeast United States involves in-
teractions among no fewer than four species (Ostfeld et
al. 1995; Jones et al. 1998). The pathogen is a spirochetal
bacterium Borrelia burgdorferi. The hematophagous vector
is the black-legged tick Ixodes scapularis. Most newly
hatched larvae attack white-footed mice Peromyscus leu-
copus; a few larvae attack other hosts (Spielman et al.
1985). Replete larvae molt and winter as nymphs. At the
start of the second year, surviving nymphs “quest” for a
second blood meal. Most successful nymphs again attack
mice, but some infectious nymphs bite humans. After feed-
ing on mice, nymphs quickly mature as adults. Adult ticks
feed preferentially on white-tailed deer Odocoileus vir-
ginianus, and mating occurs on deer. Mated females even-
tually drop off the deer, winter in leaf litter, oviposit, and
then die. In different geographic regions, the hosts, vectors,
and strains of Borrelia may differ, but the cycle of infection
usually has the same qualitative properties (Bennett 1995).

Mice do not transmit Borrelia vertically. They are in-
fected only by tick bites and apparently do not recover
from infection (Burgess et al. 1993). Piesman (1988) in-
dicates that only 0.1% of ticks is infected transovarially,
although the figure differs among tick-Borrelia associations
(Bennett 1995). Maintenance of the spirochete is due pri-
marily to the tick-mouse cycle of infection. Seasonal abun-
dance of the tick developmental stages helps drive the
cycle. In general, nymphs infected last year appear first;
these ticks transmit Borrelia to susceptible mice. Later in
the same year, larvae hatch (i.e., the next tick generation
appears) and may acquire the pathogen when they feed
on recently infected mice.

Deer dispersal influences the spatial pattern of tick lar-
vae, since deer move fecund adult ticks (Wilson et al.
1990). But deer do not disperse the pathogen. Deer cannot
be infected, and transovarial transmission in ticks is rare.
Furthermore, Borrelia cannot survive outside of its hosts
(Barbour and Fish 1993). Mice ordinarily disperse juvenile
ticks, and dispersal of infectious mice can introduce the
spirochete into tick populations. So the spatial advance of
infection must be driven by dispersal of mice and other
hosts to juvenile ticks (Van Buskirk and Ostfeld 1998).
Our model formalizes this observation in a manner pre-
dicting the velocity at which spirochete infection advances
spatially.

A Reaction-Diffusion Model for Lyme Disease

Our model treats population densities at locations (x, y)
in a continuous two-dimensional space Q. Parameters for
birth, death, infection, and developmental advance do not

depend on spatial location. Diffusion approximates dis-
persal via random motion (Holmes et al. 1994).

No current evidence suggests that tick infestation or
Borrelia infection affects mortality or fecundity in mice
(Gage et al. 1995). So, we assume the dynamics and dis-
persal of mice are independent of infestation/infection
status. To limit the number of variables, we ignore dispersal
of nymphs. At equilibrium population densities, nymph
dispersal does not affect the spread of Lyme disease. Dis-
persal of larvae is, however, important; spatial dispersion
of replete larvae governs the pattern in the risk of Lyme
disease when these animals quest as nymphs (Mather
1993). Therefore, we model dispersal of larvae while they
feed on mice.

Adult ticks reproduce and disperse diffusively; dispersal
of adults mimics movements of deer while ticks mate (deer
are not modeled explicitly). Natality and mortality among
black-legged ticks are apparently independent of Borrelia
infection (Van Buskirk and Ostfeld 1998).

We assume continuous time, approximating the natural
system from spring through late summer. Our assump-
tions ignore seasonal pattern in tick abundance; see Caraco
et al. (1998). The model requires six state variables for the
reaction-diffusion dynamics. Three subsidiary variables are
required to model the tick’s population structure. Table 1
lists all parameters.

Mice reproduce in a density-dependent manner and in-
cur density-independent mortality. Since mice are born
uninfected, the equation for susceptible-mouse density

includes birth, death, acquisition of the spiro-M(x, y, t)
chete from infectious-nymph bites, and dispersal:
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�M(x, y, t) M � m
p r (M � m) 1 � � m MM M( )�t KM

2 2� M � M
� abMn � D � , (1)M 2 2( )�x �y

where rM is the intrinsic birthrate; KM is the spatially ho-
mogeneous carrying capacity; mM is the individual mor-
tality rate among mice; a is the “attack rate” of juvenile
ticks questing for mice; is a mouse’s suscep-b(0 ! b ! 1)
tibility to pathogen infection when bitten by an infectious
nymph; and DM is the diffusion coefficient for mice, with
units (distance)2/time.

The density of pathogen-infected mice in-m(x, y, t)
creases as susceptible mice are bitten by infectious nymphs
and decreases through mortality. The equation for infected
mice includes infection, death, and dispersal:

2 2�m(x, y, t) � m � m
p abMn � m m � D � . (2)M M 2 2( )�t �x �y

The subsidiary variable is the density of questingL(A, a)
larvae. We assume that larval hatching rate depends non-
linearly on adult tick density; for discussion of the assumed
self-regulation in ticks, see Sutherst et al. (1973), Randolph
(1994), or Hughes and Randolph (2001). The density of
questing larvae declines through mortality and attacks on
mice. Then, at each :(x, y)

dL
( ) ( ) ( )p r A � a 1 � c A � a �m L � aL M � m , (3)[ ] Ldt

where r is the tick’s per capita reproduction at low density;
mL is the mortality rate among questing larvae; and c rep-
resents crowding among reproducing ticks. Larvae must
hatch at a positive rate when , so we assume(A � a) 1 0
c is small. Essentially, c is inversely proportional to deer
density, which is assumed a constant and treated implicitly.

Given densities of questing larvae, the density of larvae
infesting susceptible mice, , changes through suc-V(x, y, t)
cessful attack, completion of the first blood meal, death,
and dispersal while they infest mice:

2 2�V(x, y, t) � V � V
p aML � V(j � m ) � D � , (4)V M 2 2( )�t �x �y

where j is the rate at which larvae infesting mice complete
their meal, and mV is the mortality rate among larvae in-
festing mice. Since the duration of a larval meal seldom
exceeds a few days (Barbour and Fish 1993), . Thej 1 mV

assumptions concerning the density of larvae infesting

pathogen-infected mice, , are similar. We substitutev(x, y, t)
the density of infectious mice (m) for susceptible-mouse
density (M) and obtain .�v(x, y, t)/�t

The subsidiary variable is the density of suscep-N(V, v)
tible questing nymphs at . The variable in-(x, y, t) N(V, v)
creases as larvae complete their first meal without ac-
quiring the spirochete. The larvae may have infested a
susceptible mouse or attacked an infectious mouse and
avoided infection. As they die, bite humans, and attack
mice, decreases. Combining processes yieldsN(V, v)

dN
p j[V � (1 � b )v] � N[g � a(M � m) � m ], (5)T Ndt

where bT is a tick’s susceptibility to infection when feeding
on an infected mouse; . The mortality rate0 ! b ! 1T

among questing nymphs is mN, and g is the rate at which
nymphs bite humans.

The subsidiary variable n(v) is the density of questing,
infectious nymphs at . Infectious nymphs must have(x, y, t)
attacked a mouse infected with Borrelia as larvae and then
acquired the pathogen. Their density at any location

varies as(x, y)

dn
p b jv � n[g � a(M � m) � m ]. (6)T Ndt

The term represents the local risk of Lymegn(x, y, t)
disease to humans. We assume that nymphs biting humans
do not feed long enough to mature as adults.

Given densities of susceptible nymphs , theN(x, y, t)
density of uninfected adult ticks changes throughA(x, y, t)
attacks of those nymphs on mice, death of adults, and
dispersal:

�A(x, y, t)
p aN[M � (1 � b )m] � m AT A

�t

2 2� A � A
� D � , (7)H 2 2( )�x �y

where mA is the density-independent mortality rate among
adult ticks. The diffusion coefficient DH models dispersal
of adult ticks while they infest deer.

Given densities of infectious nymphs , the den-n(x, y, t)
sity of pathogen-infected adult ticks increases asa(x, y, t)
infected nymphs attack any mouse and as susceptible
nymphs attack infected mice and acquire Borrelia during
their second blood meal. Adding death and dispersal, we
have
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Table 2: Positive equilibrium densities

Susceptible mice ∗ ∗ 2 ∗ ∗M p Q � m p m Q /[bb m (A � a )]M T A

Questing larvae ∗ 2 ∗ ∗L p {[(j � m )(g � aQ � m )m ]/j(aQ) } (A � a )V N A

Larvae on infected mice ∗ ∗ ∗v p [(g � aQ � m )/jaQ]{[bb m (A � a ) � m Q]/bb }N T A M T

Larvae on susceptible mice ∗V p [m (g � aQ � m )]/bb ajM N T

Susceptible nymphs ∗ ∗ ∗N p {[m (1 � b )/aQ](A � a )} � (m /ab)A T M

Infected adult ticks ∗ ∗ ∗ ∗a p (a/m ) [Qn � b m N ]A T

Uninfected adult ticks ∗ ∗ ∗A p (a/m ) N (Q � b m )A T

Note: The text gives total mice (Q), infected mice ( ), total adult ticks ( ), and infectious nymphs∗ ∗ ∗m A � a

( ). Note that both and can be expressed directly in terms of model parameters by substituting for∗ ∗ ∗n a A

and then using equation (10).∗N

�a(x, y, t)
p a[(M � m)n � b mN] � m aT A

�t

2 2� a � a
� D � . (8)H 2 2( )�x �y

Traveling Wave Conjecture

Suppose that a local population exhibits positive per capita
growth at low density, self-regulation, and that diffusion
occurs along one dimension. The equilibria of local growth
are 0 and K, the carrying capacity. If initial density is 0
everywhere and a small density is introduced at one lo-
cation, that population will increase to K locally and ex-
pand as a traveling wave. As the wave advances spatially,
it transforms the first equilibrium (0) into the positive
equilibrium K. The wave has asymptotic speed (4rD)1/2,
where r is the intrinsic rate of increase and D is the dif-
fusion coefficient (Murray et al. 1986; Holmes et al. 1994;
Dwyer and Elkinton 1995). Qualitatively similar traveling
waves can characterize stage-structured populations (Neu-
bert and Caswell 2000) and multispecies reaction-diffusion
systems (Dunbar 1983; Hutson 1986).

Reaction Equilibria

To analyze our model, we first identify the aspatial equi-
libria. After deleting diffusion terms, the equations yield
three such equilibria: extinction of the system, positive
abundance of ticks and mice in the absence of the spi-
rochete, and proportional infection of both mice and ticks.
The appendix gives conditions for feasibility of the equi-
libria and their local stability.

Several equilibrium values depend on the total (suscep-
tible plus infected) density of mice or on the total density
of adult ticks. At positive equilibrium, the total density of
mice is

mM∗ ∗M � m p K 1 � p Q, (9)M( )rM

where Q is a convenience. If , Q is stable. Totalr 1 mM M

density of adult ticks at equilibrium is

1 (aQ � m )(j � m )(g � aQ � m )mL V N A∗ ∗A � a p � ,
2( )c rcj aQ

(10)

where . Increases in aQ, the rate at which each in-c ! 1
dividual juvenile tick attacks mice, can increase adult tick
density. A milder abiotic environment should reduce the
juvenile mortality rates and so increase adult tick density.

Given total mouse and adult tick densities, we can ob-
tain positive equilibrium levels for individual state varia-
bles. The equilibrium density of pathogen-infected mice,

, is∗m

∗ ∗bb m (A � a ) � m QT A M∗m p Q . (11)∗ ∗bb m (A � a )T A

Maintaining the cycle of infection requires .∗m 1 0
Intuitively, geometric mean susceptibility to infection,
(bbT)1/2, must be sufficiently high. The appendix shows
that maintaining Borrelia infection requires a greater r than
does maintaining a tick population at equilibrium in the
absence of infection. For most juvenile-mortality combi-
nations and given r/mA, an increased equilibrium density
of mice makes infection-cycle maintenance more likely.

The variable most important in predicting the risk of
human Lyme disease is the density of infectious nymphs

:∗n

∗ ∗bb m (A � a ) � m QT A M∗n p . (12)
baQ

The positive equilibrium densities for the remaining seven
variables of the model are listed in table 2.
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Figure 1: Infectious nymph density at equilibrium. A, against adult∗n
tick mortality rate. Thick line: base-level parameters ( ,Q p 3 m pM

, , , , , , ,0.02 r p 0.35 c p 0.0003 g p 0.005 j p 0.25 a p 0.02 m p 0.09L

, ). Thin line: juvenile tick mortalities halved; otherm p 0.08 m p 0.06V N

parameters at base level. Broken line: c halved; other parameters at base
level. B, against attack rate, a. in each plot; otherwise,∗n m p 0.03A

parameters varied among three plots as in A.

Before analyzing the diffusion model’s velocity, we
summarize properties of the aspatial equilibrium and its
stability. Figure 1A shows how the equilibrium density
of infectious nymphs can depend on adult tick mor-∗n
tality rate mA. In each plot, reaches a maximum at∗n
some intermediate mA. High adult tick mortality, which
could result from either severe weather or application of
an acaricide to deer (Pound et al. 2000), reduces each
juvenile tick density as the number of reproductive ticks
declines. Very low adult mortality can reduce juvenile
tick density through the assumed density dependence in
tick reproduction.

Comparing plots in figure 1A shows that decreasing
juvenile tick mortality rates not only increases but also∗n
increases the maximal adult mortality mA allowing a pos-
itive equilibrium density of infectious nymphs. So, the
three plots collectively indicate that the risk of Lyme dis-
ease should depend on the way abiotic factors influencing
tick mortality interact with crowding during reproduction.

For each plot in figure 1A, the total density of ticks
(combining stage and infection status) varies little over
low and intermediate levels of mA, and then declines rapidly
with at high mA. Stage structure, in contrast, varies∗n
smoothly; the relative abundance of the juvenile tick stages
increases with any increase in mA, until there are too few
adults to maintain positive equilibrium.

Figure 1B shows how can depend on the juvenile∗n
tick attack rate a. In each plot, reaches a maximum at∗n
an intermediate a. When the attack rate is very low, most
larvae die before feeding. A much larger a sufficiently
reduces the length of time a nymph quests for a blood
meal to decrease the density of infectious nymphs. Total
tick density initially increases with a and then remains
relatively large across higher levels of the attack rate.
Hence, both total density and the tick population’s stage
structure vary significantly as a increases.

The model’s positive equilibrium densities suggest that
and the risk of Lyme disease to humans are greatest at∗n

intermediate adult tick mortality mA and intermediate at-
tack rate a. However, the density of infected mice (not∗m
shown in fig. 1) exhibits a different pattern; responds∗m
to variation in adult mortality, as does , but it does not∗n
follow that a high density of infectious nymphs is always
required for a high frequency of infection among mice.
As attack rate a increases, increases monotonically∗m
despite the decrease in at higher a. Below, we show∗n
that the velocity of the spatial epidemic qualitatively
matches the pattern of infection frequency in mice, rather
than the pattern in the density of infectious nymphs.

Stability of Vector Stage Structure

Assuming that total mouse density remains at equilibrium,
we consider local stability of the tick’s equilibrium stage

structure without reference to infection, since Borrelia does
not affect tick demography. The total densities ( ),∗ ∗A � a

, ( ), and ( ) specify the tick’s stage struc-∗∗ ∗ ∗ ∗L N � n V � v
ture. Equilibria are extinction of the tick population and
the positive equilibrium densities.

The appendix indicates that for any given adult mor-
tality rate mA or any given attack rate a, stability depends
on the tick intrinsic birthrate r. If r is sufficiently small,
extinction is locally stable, and the positive equilibrium is
not feasible. As r increases, positive equilibrium densities
become feasible and locally stable, and extinction is un-
stable. As r continues to increase, both extinction and the
positive equilibrium are unstable, and the tick densities
begin to cycle.
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Stability of Infection Equilibria

Next, we examine the condition for Borrelia’s invasion of
the tick-mouse interaction at demographic equilibrium.
The infection equilibria are extinction of the spirochete,
and the positive equilibrium [ ]. We assume∗∗ ∗ ∗m v n a
mouse density remains at positive equilibrium and that
total tick densities remain at the positive stage-structured
equilibrium. The appendix shows that whenever ∗m 1 0
is feasible, the infection equilibrium is locally stable. Oth-
erwise, extinction of the spirochete is stable. From the
appendix, local stability of spirochete extinction requires

∗ ∗m Q 1 bb m (A � a ). (13)M T A

That is, the spirochete cannot advance when rare, and the
tick densities remain at demographic equilibrium, when
the number of mice dying exceeds the number of adult
ticks dying times the product of the mouse and tick sus-
ceptibilities. In areas where spirochete infection is enzo-
otic, tick densities are far greater than mouse density (Ost-
feld et al. 1998), and adult tick densities in our model
increase with the density of mice, by equation (10).

We verify the stability criterion for the infection dy-
namics by evaluating , the number of infections perR 0

infection when the spirochete is rare. The disease advances
initially if . Since the infection process involves vec-R 1 10

tor and host dynamics, we calculate in stages.R 0

Suppose an initial infectious nymph enters the tick-
mouse system at demographic equilibrium. The nymph
attacks, at most, one mouse. Given that the nymph feeds
before it dies, the probability of infecting the host is b.
The expected number of mice infected by this nymph, Rn,
is the unconditional probability that Borrelia is transmitted
to a single mouse:

baQ
R p ! 1. (14)n (g � aQ � m )N

If a mouse acquires the spirochete from the first infected
nymph, Rm is the expected number of nymphs infected,
as feeding larvae, by that mouse. Larvae attack the mouse
at rate during its remaining lifetime, a fraction bT are∗aL
infected, and a fraction survive to quest asj/(j � m )V

nymphs. Then,

∗b jaLTR p . (15)M (j � m )mV M

The number of infections/initial infection is ,R p R R0 n m

which can be expressed as

∗bb m AT AR p , (16)0
m QM

where when infection is rare. The criterion∗ ∗ ∗A p (A � a )
for advance of the infection, , just reverses the con-R 1 10

dition for stability of the spirochete’s extinction.

Spatial Velocity of Infection

Next we ask how adult tick mortality and juvenile attack
rate influence the velocity at which infection spreads in
the diffusion model (van den Bosch et al. 1990; Dwyer
1994). We assume demographic equilibrium and introduce
infectious nymphs in a small area within the space Q where
neither mice nor other ticks are infected. If the pathogen
advances, infection should spread as a circular wave front
about the inoculum (Lewis and Kareiva 1993). As time
grows large, the wave front should approach a constant
velocity. As the wave passes any location, densities of in-
fected ticks and infectious mice should increase until, we
assume, they attain the positive equilibrium levels. The
initial wave-front velocity may be lower in two dimensions
than in one dimension (Holmes at al. 1994), but we can
approximate the velocity using one-dimensional models
(Murray et al. 1986; Dwyer 1994). We apply a method
from Mollison (1991), which may be consulted for details.
The method invokes a linear approximation of the dy-
namics, so that approximates the number of infectedR 0

tick nymphs per infection cycle. Furthermore, our velocity
analysis treats space as one-dimensional.

The velocity at which disease spreads depends first on
, second, on spatial locations where ticks are infectedR 0

as larvae, which itself depends on diffusion of infected
mice, and, finally, on the average duration of the cycle of
infection (Mollison and Levin 1995). Since is discussedR 0

above, we turn to the locations of infection.
The continuous random variable X represents the dis-

tance between the location where a mouse acquires infec-
tion and the location where it transmits infection to a
larval tick. Under random diffusion, a cohort of mice in-
fected at the same location produces a normal distribution
of dispersing mice with an average displacement of 0. But
the variance of the dispersal distance is proportional to
(DMt), so the mean squared displacement increases with
time.

Next, let the continuous random variable T represent
the duration of a “typical” cycle of transmission from
nymph to mouse to larva. In probabilistic terms, T is the
sum of random waiting times. An infectious tick nymph
quests for an interval with mean �1w p (g � aQ �

. The probability that the waiting time ends with�1m )N

infection of a mouse is . Given transmission of thebaQ/w
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Figure 2: Approximated standardized velocities for diffusion of infection.
. A, y0 against adult tick mortality rate mA; base-levelD p 0.1 p 10DH M

parameters as in figure 1A. B, against attack rate a; base-level param-y0

eters as in figure 1B.

spirochete to the host, the time elapsing to a typical larval
infection will have the same distribution as the mouse’s
remaining lifetime, since larvae attack randomly and in-
dependently; this is a key assumption (Mollison 1991).
The mouse remains alive for an interval with mean ;�1mM

during this time, the mouse is attacked by larvae at con-
stant probabilistic rate . A larva feeding on an infected∗aL
mouse acquires Borrelia and survives to quest as an in-
fectious nymph with combined probability .b j/(j � m )T V

For simplicity, we ignore the larval meal, which lasts only
a day or so. Then . Note that diffusion�1 �1E[T] p w � mM

of Borrelia begins only after infection of the mouse (see
Murray et al. 1986).

Let be the joint probability density of distanceK (X, T)0

X and cycle duration T. Then, the reproduction-dispersal
kernel, or infection-dispersal kernel, is K(X, T) p

, which combines the three elements listedR K (X, T)0 0

above (van den Bosch et al. 1990). The appendix presents
our analysis of wave-front velocity, which we express in a
standardized form. That is, if y is a velocity, we write the
standardized velocity as . Since DM has1/2 1/2y p yE[T] /2D0 M

units of (distance)2/time, is dimensionless (Mollison andy0

Levin 1995).
Figure 2A shows how the standardized velocity of the

advancing disease varies with adult tick mortality rate. In
each plot, reaches a maximum as mA increases and theny0

declines with further increases in mA. The value of forR 0

the disease responds similarly to variation in mA. Com-
bining these effects with those associated with figure 1A,
indicates that the important demographic quantities vary
similarly (and nonmonotonically) with adult tick mortal-
ity: infectious nymphs, infected mice, the pathogen’s ,R 0

and the velocity at which disease advances spatially.
Figure 2B shows how standardized velocity depends on

the juvenile tick attack rate a. In each plot, increasesy0

in a strictly monotonic, decelerating manner as a increases.
for the pathogen varies similarly with a, as does theR 0

density of infected mice. Comparing these patterns with
figure 1B indicates that at low a, the velocity at which
disease spreads increases as the density of infectious
nymphs increases. However, at higher levels of a, the ep-
idemic’s spatial velocity and the local risk of zoonotic in-
fection, , decouple. So, the velocity at which disease∗n
advances spatially always varies concordantly with the
pathogen’s and the density of infected hosts (the dis-R 0

persers, ) but does not match variation in the density∗m
of infectious vectors ( ).∗n

We simulated the two-dimensional reaction-diffusion
model using techniques that adaptively refine time and
space steps to approximate the wave front (Adjerid et al.
1999; Ohsumi et al. 2000). We began with total densities
of mice and tick stages at demographic equilibrium across
a square region. We set densities of infected mice and

infected ticks at infection-equilibrium densities in a small
square at the center of the region; elsewhere, no organisms
were infected initially.

In six simulations, we chose parameter values where
both the total tick densities and the predicted enzootic
infection frequencies were locally stable. In each case, the
densities of infected mice and infected ticks increased, via
an advancing front, to equilibrium across the region. Ob-
served equilibria are very close to the values given by the
aspatial solution. Table 3 shows the predicted densities of
infected mice and tick nymphs and the equilibria observed
in simulation. It also shows predicted and observed ve-
locities of the infection. Densities match well quantita-
tively. Velocities estimated from the simulations are lower,
by 30% on average, than values predicted by the one-
dimensional approximation, but the rank order of the es-
timated velocities and those solved from the model are the
same.
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Table 3: Comparison of model and simulation results

mA a

.002 .025 .045 .015 .02 .5

∗m 2.81 2.97 2.93 2.93 2.97 2.99
m(s) 2.81 2.97 2.93 2.93 2.97 2.99

∗n 50.04 350.09 141.76 184.76 338.93 29.03
n(s) 50.04 350.17 141.69 184.64 338.93 29.03

∗N 56.71 356.76 148.42 193.65 345.6 29.3
N(s) 56.71 356.84 148.36 193.52 345.59 29.3
y0 2.31 4.04 3.22 3.11 4.12 8.34
y0(s) 1.99 2.68 2.33 2.09 3.88 4.32

Note: Parameter values as in figure 1, and . SimulationD p 0.1 p 10DH M

results given in rows with “(s).” Measures of velocity during simulation depend

on method used. We estimated velocity, obtaining y0(s), only after diffusion

had taken a clearly circular shape.

Discussion

Our analysis introduces spatially detailed hypotheses to
models for Lyme disease and other vector-borne infections
with stage-structured dynamics and host dispersal. Regions
where the incidence of human infection with Borrelia is
high have expanded regularly, producing positive spatial
correlation in disease measures at extended distances (Gla-
vanakov et al. 2001). Our results indicate that as we vary
vector mortality rates, the velocity at which the disease
advances is roughly proportional to the density of infec-
tious vectors, hence proportional to the local risk of zoo-
notic infection. However, the spatial velocity of infection
may increase or decrease with the density of infectious
vectors as the rate at which juvenile ticks attack hosts
varies. In either case, the velocity remains roughly pro-
portional to the frequency of infection among hosts.

Most models for vector-borne disease ignore vector dy-
namics, and any stage structure, since infection among
vectors may equilibrate faster than the host’s dynamics
evolve (Dye and Williams 1995). However, the general
implication of our results suggests that when the lifespan
of host and vector scale similarly, for the pathogenR 0

depends on the way the vector’s stage-structured dynamics
interact with host dispersal. Consequently, stage structure
affects the criterion for pathogen invasion of a host pop-
ulation, the equilibrium frequency of infection among
hosts, and the velocity of the spatial epidemic. A vector’s
stage structure should remain significant when hosts are
immobile and pathogen spread is due solely to dispersal
by the vector, especially when acquisition and transmission
of the pathogen occur in different stages. We simplified
our analysis of the epidemic’s advance by assuming that
total densities of host and vector were at equilibrium; vec-
tor dynamics are likely more important to the velocity of
spatial advance when both vector abundance and the fre-
quency of host infection are increasing.

To deduce hypotheses from the model, we focused on
two effects, summarized in figures 1 and 2. First, recall
that the equilibrium density of infectious vectors varies
nonmonotonically with the mortality rate of adult ticks.
Clearly, sufficient mortality among reproductives can re-
duce densities of all tick stages, and so inhibit the advance
of infection. Density-dependent reproduction at low adult
mortality remains a plausible but as yet uncertain as-
sumption. Van Buskirk and Ostfeld (1995) impose a nu-
merical upper bound for the number of ticks/host; some
questing adults can then be excluded from reproduction.
The sort of density-dependent crowding we assume might
result from self-regulated recruitment caused by host im-
mune responses to tick bites (Randolph 1979, 1994; Wikel
1982; Hughes and Randolph 2001). Host immune re-
sponses might decrease the average blood meal taken by
adult female ticks, and individual tick fecundity varies di-
rectly with meal size (Hudson and Dobson 1995). But this
effect is less certain than effects of abiotic factors on tick
mortality (Mount et al. 1997).

Second, recall that at higher levels of the juvenile tick
attack rate, the density of infectious vectors and the ve-
locity of the epidemic’s advance vary inversely. So, the
local risk of zoonotic infection declines while the spread
of infection among vectors and hosts accelerates spatially.
The effect simply means that an increased attack rate re-
duces the waiting time before a questing nymph encoun-
ters a mouse; the frequency of accidental bites to humans
is consequently reduced. But our model’s assumption of
continuous-time, mass-action development of ticks ig-
nores seasonal pattern in abundances and activities of the
different stages. Seasonal constraints on the appearance of
emerging larvae might limit the spread of disease despite
increased feeding success of infectious nymphs. Our model
applies the same attack rate a to both larvae and the larger
nymphs. Since ticks are relatively immobile, a juvenile
tick’s opportunity to feed likely depends more on the den-
sity and mobility of mice than its own stage or size.

Finally, our model equates dispersal with random dif-
fusion, an assumption difficult to fulfill at certain biolog-
ical scales (Holmes 1993; Kot et al. 1996; Clark et al. 2001).
But diffusion models often approximate dispersal data
quite reasonably (van den Bosch et al. 1992) and so should
predict the spatial advance of disease (Murray et al. 1986).
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Appendix

Stability of Demographic Equilibria

We assume the density of mice takes its locally stable,
positive equilibrium . DemographicQ p K (1 � m /r )M M M

equilibrium refers to total densities of the various tick
stages, without reference to infection. The variables are
densities of adult ticks ( ), questing larvae , larvae∗ ∗ ∗A � a L
infesting mice ( ), and questing nymphs (∗∗ ∗V � v N �

). At demographic equilibrium, the density of adult ticks∗n
is either 0 (tick extinction) or the positive density given
by equation (10) in the text. The three other equilibrium
values are directly proportional to ( ):∗ ∗A � a

(j � m )(g � aQ � m )mV N A∗ ∗ ∗L p (A � a ), (A1)
2j(aQ)

(g � aQ � m )mN A∗∗ ∗ ∗(V � v ) p (A � a ), (A2)
jaQ

mA∗ ∗ ∗ ∗(N � n ) p (A � a ). (A3)( )aQ

Dynamics of the variables that sum susceptible and in-
fective ticks are given by the sums of the dynamics for the
two infection-status variables. The Jacobian for the tick
demographic dynamics is the matrix J with elements jik:

J p

∗ ∗( )�aQ � m 0 0 r 1 � 2c A � a[ ]L

aQ �j � m 0 0V ,
0 j �g � aQ � m 0[ ]N

0 0 aQ �mA

(A4)

where j14 is evaluated at equilibrium.�(dL/dt)/�(A � a)
Existence of the positive equilibrium requires

r (aQ � m )(j � m )(g � aQ � m )L V N
1 . (A5)

2m j(aQ)A

The tick birthrate r must be large enough, relative to adult
mortality rate mA, to assure feasibility of the positive equi-
librium. Otherwise, extinction is the only equilibrium.

We calculated the eigenvalues of J numerically for a
range of mA and a values; other parameters were set as in
the plots of figure 1. For any given mA, or any given a,
extinction is the only feasible equilibrium, and is locally

stable, for r sufficiently small. Increased r makes the pos-
itive equilibrium feasible, and it is locally stable initially.
Further increases in r destabilize the positive equilibrium.

Stability of Infection Equilibria

We assume the density of mice and the total densities of
the various tick stages remain at positive equilibrium. The
variables of interest are the equilibrium densities of in-
fected mice, , larvae feeding on infectious mice , in-∗∗m v
fectious nymphs , and infected adults . The infection∗ ∗n a
equilibria are extinction of the spirochete, where each of
the equilibrium densities is 0, and the positive equilibrium
is given in the text. Maintenance of the cycle of infection
requires . From equation (11), this becomes∗m 1 0

∗ ∗bb m (A � a ) 1 m Q. (A6)T A M

Maintaining Borrelia requires a greater r than necessary
for feasibility of an equilibrium tick population in the
absence of infection; compare expressions (A5) and (A6).

At aspatial equilibrium the Jacobian for the infection
dynamics is the matrix

I p

∗ ∗( )�ban � m 0 ba Q � m 0M
∗ ( )aL � j � m 0 0V ,( )0 b j � g � aQ � m 0[ ]T N

∗ ∗ab N 0 aQ � ab m �mT T A

(A7)

where questing larvae are susceptible. By column∗L 1 0
expansion , where G, with elements gik,det I p �m det GA

is the first three rows and columns of I.
At extinction of the spirochete, , andg p �m g p11 M 13

. At the positive infection equilibrium these termsbaQ
depend, respectively, on the density of infectious nymphs
and the density of infected mice.

Local stability was determined from the characteristic
equation of G, multiplied by �1. The characteristic equa-
tion is , where l is an ei-3 2C(l) p l � x l � x l � x1 2 3

genvalue and

x p �(g � g � g ) 1 0,1 11 22 33

x p g g � g g � g g 1 0, (A8)2 11 22 11 33 22 33

∗x p �g g g � aL b jg ,3 11 22 33 T 13

where x3 may be positive or negative. Local stability of
either equilibrium, by the Routh-Hurwitz method, re-
quires , , and . The first condition isx 1 0 x x 1 x x 1 01 1 2 3 3

fulfilled at both spirochete extinction and the positive in-
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fection equilibrium. The second, more complicated con-
dition also holds at both equilibria. Local stability of each
equilibrium, then, depends on the sign of x3.

Substituting equation (13) for and simplifying shows∗L
that spirochete extinction is locally stable when

∗ ∗( )m Q 1 bb m A � a . (A9)M T A

When this inequality is reversed, the positive equilibrium
is locally stable; this condition recovers expression (A6).
When the infection equilibrium is feasible, it is locally
stable. Otherwise, spirochete extinction is stable.

Traveling Wave Velocity

The random variable X is distance a mouse disperses be-
tween its infection and passing the infection to a larval
tick. The random variable T is the duration of the “typical”
cycle of infection. Following Mollison (1991), the infec-
tion-dispersal kernel is

T

baQ j∗ �w(T�z) �m zMK(X, T) p b aL we e f (z)dz,T � X
g � aQ � m j � mN V

0

(A10)

where fX(z) is the normal probability density representing
dispersal distance; fX(z) has mean 0 and variance pro-
portional to time z. Simplifying the last expression yields

T

�w(T�z) �m zMK(X, T) p R we m e f (z)dz. (A11)0� M X

0

To calculate velocity we take the expectation of
:exp [v(X � yT)]

�

v(X�yT)H(y, v) p R K(X, T)e dXdT. (A12)0��
0 Q

The smallest positive y for which is the minimalH(y, v) p 1
one-dimensional velocity (Mollison and Levin 1995). Mol-
lison (1991) analyzes when has the form ofH(y, v) K(X, T)
(A10). Applying that method, let ; if y is a�1p p (m E[T])M

solution, is the associated standardized velocity. Definey0

�1 2h p (1 � p) � 2y ,1 0

22y0h p .2 p(1 � p)

Then, we find numerically by solvingy0

2 1.5 32(h � 3h ) � 2h � 9h h1 2 1 1 2R p 1 � . (A13)0 27h 2

For details, see Murray et al. (1986) and Mollison (1991).

Literature Cited

Adjerid, S., B. Belguendouz, and J. E. Flaherty. 1999. A
posteriori finite element error estimation for diffusion
problems. SIAM (Society for Industrial and Applied
Mathematics) Journal on Scientific Computing 21:
728–746.

Andow, D. A., P. M. Kareiva, and S. A. Levin. 1990. Spread
of invading organisms. Landscape Ecology 4:177–188.

Aron, J. L., and R. M. May. 1982. The population dynamics
of malaria. Pages 139–179 in R. M. Anderson, ed. Pop-
ulation dynamics of infectious diseases: theory and ap-
plication. Chapman & Hall, London.

Awerbuch, T. E., and S. Sandberg. 1995. Trends and os-
cillations in tick population dynamics. Journal of The-
oretical Biology 175:511–516.

Barbour, A. G., and D. Fish. 1993. The biological and social
phenomenon of Lyme disease. Science (Washington,
D.C.) 260:1610–1616.

Bennett, C. E. 1995. Ticks and Lyme disease. Advances in
Parasitology 36:343–405.

Burgess, E. C., M. D. Wachal, and T. D. Cleven. 1993.
Borrelia burgdorferi infection in dairy cows, rodents, and
birds from four Wisconsin dairy farms. Veterinary Mi-
crobiology 35:61–77.

Caraco, T., G. Gardner, W. Maniatty, E. Deelman, and B.
K. Szymanski. 1998. Lyme disease: self-regulation and
pathogen invasion. Journal of Theoretical Biology 193:
561–575.

Clark, J. S., M. Lewis, and L. Horvath. 2001. Invasion by
extremes: population spread with variation in dispersal
and reproduction. American Naturalist 157:537–554.

Diekmann, O., M. Gyllenberg, J. A. J. Metz, and H. R.
Thieme. 1998. On the formulation and analysis of gen-
eral deterministic structured population models. I. Lin-
ear theory. Journal of Mathematical Biology 36:349–388.

Dunbar, S. R. 1983. Travelling wave solutions of diffusive
Lotka-Volterra equations. Journal of Mathematical Bi-
ology 17:11–32.

Dwyer, G. 1994. Density dependence and spatial structure
of insect pathogens. American Naturalist 143:533–562.

Dwyer, G., and J. S. Elkinton. 1995. Host dispersal and
the spatial spread of insect pathogens. Ecology 76:
1262–1275.

Dye, C., and B. G. Williams. 1995. Nonlinearities in the
dynamics of indirectly-transmitted infections (or, does



358 The American Naturalist

having a vector make a difference?). Pages 260–279 in
B. T. Grenfell and A. P. Dobson, eds. Ecology of infec-
tious diseases in natural populations. Cambridge Uni-
versity Press, Cambridge.

Feng, Z., and J. X. Velasco-Hernández. 1997. Competitive
exclusion in a vector-host model for dengue fever. Jour-
nal of Mathematical Biology 35:523–544.

Gage, K. L., R. S. Ostfeld, and J. G. Olsen. 1995. Nonviral
vector-borne zoonoses associated with mammals in the
United States. Journal of Mammalogy 76:695–715.

Glavanakov, S., D. J. White, T. Caraco, A. Lapenis, G. R.
Robinson, B. K. Szymanski, and W. A. Maniatty. 2001.
Lyme disease in New York state: spatial pattern at a
regional scale. American Journal of Tropical Medicine
and Hygiene 65:538–545.

Holmes, E. E. 1993. Are diffusion models too simple? a
comparison with telegraph models of invasion. Amer-
ican Naturalist 142:779–795.

Holmes, E. E., M. A. Lewis, J. E. Banks, and R. R. Veit.
1994. Partial differential equations in ecology: spatial
interactions and population dynamics. Ecology 75:
17–29.

Hudson, P. J., and A. P. Dobson. 1995. Macroparasites:
observed patterns. Pages 14–176 in B. T. Grenfell and
A. P. Dobson, eds. Ecology of infectious diseases in
natural populations. Cambridge University Press,
Cambridge.

Hughes, V. L., and S. E. Randolph. 2001. Testosterone
depresses innate and acquired resistance to ticks in nat-
ural rodent hosts: a force for aggregated distributions
of parasites. Journal of Parasitology 87:49–54.

Hutson, V. 1986. Stability in a reaction-diffusion model
of mutualism. SIAM (Society for Industrial and Applied
Mathematics) Journal on Mathematical Analysis 17:
58–66.

Jones, C. G., R. S. Ostfeld, E. M. Schauber, M. Richard,
and J. O. Wolff. 1998. Chain reactions linking acorns
to gypsy moth outbreaks and Lyme-disease risk. Science
(Washington, D.C.) 279:1023–1026.

Kot, M., M. A. Lewis, and P. van den Driessche. 1996.
Dispersal data and the spread of invading organisms.
Ecology 77:2027–2042.

Lewis, M. A., and P. Kareiva. 1993. Allee dynamics and
the spread of invading organisms. Theoretical Popula-
tion Biology 43:141–158.

Mather, T. N. 1993. The dynamics of spirochete trans-
mission between ticks and vertebrates. Pages 43–60 in
H. S. Ginsberg, ed. Ecology and environmental man-
agement of Lyme disease. Rutgers University Press, Pis-
cataway, N.J.

Mollison, D. 1991. Dependence of epidemic and popu-
lation velocities on basic parameters. Mathematical Bio-
sciences 107:255–287.

Mollison, D., and S. A. Levin. 1995. Spatial dynamics of
parasitism. Pages 384–398 in B. T. Grenfell and A. P.
Dobson, eds. Ecology of infectious diseases in natural
populations. Cambridge University Press, Cambridge.

Mount, G. A., D. G. Haile, and E. Daniels. 1997. Simu-
lation of blacklegged tick (Acari: Ixodidae) population
dynamics and transmission of Borrelia burgdorferi. Jour-
nal of Medical Entomology 32:461–484.

Murray, J. D., E. A. Stanley, and D. L. Brown. 1986. On
the spatial spread of rabies among foxes. Proceedings
of the Royal Society of London B, Biological Sciences
229:11–151.

Neubert, M. G., and H. Caswell. 2000. Demography and
dispersal: calculation and sensitivity analysis of inva-
sion speed for structured populations. Ecology 81:
1613–1628.

Ohsumi, T. K., J. E. Flaherty, V. H. Barocas, S. Adjerid,
and M. Aiffa. 2000. Adaptive finite element analysis of
the anisotropic biphasic theory of tissue-equivalent me-
chanics. Computer Methods in Biomechanics and Bio-
medical Engineering 3:215–229.

Ostfeld, R. S., O. M. Cepeda, K. R. Hazler, and M. C.
Miller. 1995. Ecology of Lyme disease: habitat associa-
tions of ticks (Ixodes scapularis) in a rural landscape.
Ecological Applications 5:353–361.

Ostfeld, R. S., F. Keesing, C. G. Jones, C. D. Canham, and
G. M. Lovett. 1998. Integrative ecology and the dynam-
ics of species in oak forests. Integrative Biology: Issues,
News & Reviews 1:178–186.

Piesman, J. 1988. Transmission of Lyme disease spiro-
chetes. Experimental and Applied Acarology 7:71–80.

Pound, J. M., J. A. Miller, J. E. George, and C. E. Le-
meilleur. 2000. The “4-poster” passive topical treatment
device to apply acaricide for controlling ticks (Acari:
Ixodidae) feeding on white-tailed deer. Journal of Med-
ical Entomology 37:588–594.

Randolph, S. E. 1979. Population regulation in ticks: the
role of acquired resistance in natural and unnatural
hosts. Parasitology 79:141–156.

———. 1994. Density-dependent acquired resistance to
ticks in natural hosts, independent of concurrent in-
fection with Babesia microti. Parasitology 108:413–419.

Spielman, A., M. L. Wilson, J. F. Levine, and J. Piesman.
1985. Ecology of Ixodes-borne human babesiosis and
Lyme disease. Annual Review of Entomology 30:
439–460.

Sutherst, R. W., K. B. W. Utech, M. J. Dallwitz, and J. D.
Kerr. 1973. Intraspecific competition of Boophilus mi-
croplus (Canestrini) on cattle. Journal of Applied Ecol-
ogy 10:855–862.

Van Buskirk, J., and R. S. Ostfeld. 1995. Controlling Lyme
disease by modifying the density and species compo-
sition of tick hosts. Ecological Applications 5:133–1140.



Spatial Model for Lyme Disease 359

———. 1998. Habitat heterogeneity, dispersal, and local
risk of exposure to Lyme disease. Ecological Applications
8:365–378.

van den Bosch, F., J. A. J. Metz, and O. Diekmann. 1990.
The velocity of spatial population expansion. Journal of
Mathematical Biology 28:529–565.

van den Bosch, F., R. Hengeveld, and J. A. J. Metz. 1992.
Analysing the velocity of animal range expansion. Jour-
nal of Biogeography 19:135–150.

White, D. J. 1998. Lyme disease. Pages 141–153 in S. R.
Palmer, Lord Soulsby, and D. I. H. Simpson, eds. Zoo-
noses. Oxford University Press, New York.

White, D. J., H.-G. Chang, J. L. Benach, E. M. Bosler, S.

C. Meldrum, R. G. Means, J. G. Debbie, G. S. Birkhead,
and D. L. Morse. 1991. The geographic spread and tem-
poral increase of the Lyme disease epidemic. Journal of
the American Medical Association 266:1230–1236.

Wikel, S. K. 1982. Immune responses to arthropods and
their hosts. Annual Review of Entomology 27:21–48.

Wilson, M. L., A. M. Ducey, T. S. Litwin, and A. Spielman.
1990. Microgeographic distribution of immature Ixodes
dammini correlated with that of deer. Medical and Vet-
erinary Entomology 4:151–159.

Editor: Joseph Travis
Associate Editor: Jim Bull


