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Spatial Model

• Rates are very slow---not sure why Tilman chose 
these.  You may alter these as long as you explain 
what you are doing.

• Remember that the solution to the Levins model is 
based on continuous rates.  You know how to 
change those to discrete rates.

• Two programming approaches are possible.
– Cycle over 2- dimensional array (or sheet)
– User defined data type for plants with locations

Option Explicit
Sub population()
Type Plant

x As Double
y As Double

End Type
Dim population(10000) As Plant
For j = 1 To 10000 step 1

Plant(j).x = etc
Plant(j).y = etc

etc.
Next j
End Sub
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Grazing Model

• You specify U over a range of levels
• Initial conditions

– NPP = 600
– G = 0

Types of Spatial Models

• Spatially Implicit
– single state variable
– multiple state variables

• Spatially Explicit
– grid based

• categorical
• continuous

– individual based
– reaction diffusion
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Partial Differential Equation 
Models in Ecology
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Functions of 2 
Variables

u = f(x,y)

Special case f(x,y) = k, a 
constant

Partial Derivatives
• Partial derivatives have application in non-linear 

optimization and confidence intervals on model 
parameters.

• Derivatives apply to functions with 1 independent 
variable.

• Partial derivatives apply to functions with >1 
independent variables.

• For each variable, take derivative as if it were the 
only independent variable.  Treat others as 
constants.
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Partial 
Derivatives

Diagram from Gillman, M., and R. Hails. 1997. An 
Introduction to Ecological Modelling : Putting Practice 
Into Theory (Methods in Ecology Series). Blackwell 
Science, London.

What are partial derivatives 
at point (x1,y1)?

u

First Principles Definition of 
Partial Derivative
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The partial derivative of  with respect to :
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The partial derivative of  with respect to :
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Partial derivative example
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Second Partial Derivatives
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This is the 
common notation
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Partial Differential Equations

Time

As before, we have an equation for the rate of change and we want 
to understand how the state changes.  But now we want to know 
how the state changes over x, y, and t.
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Partial Differential Equations to Model 
Change in Position with Time

2 2

2 2

2

( , , )Basic form of diffusion model:   

distancewhere D is the diffusion rate with units .
time

u x y t u uD
t x y

 ∂ ∂ ∂= + ∂ ∂ ∂ 

( , , ) is the mass, number, or density
of a quantity of interest at location ( , ) at time .
u x y t

x y t
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2 2

2 2

2 2

2 2

( , , )

is usually written as 

u x y t u uD
t x y

u u uD
t x y

 ∂ ∂ ∂= + ∂ ∂ ∂ 

 ∂ ∂ ∂= + ∂ ∂ ∂ 

Derivation of Diffusion from 
Random Walk

λ λ

probability of move to left = probability of move to 
right = 1/2

x

λ is the distance 
moved in one time 
step.
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λ λ

x

Given that a bee starts at position x = 0 at time t = 0, what it the 
probability of finding the bee at any position x at a later time t + 
∆t, that is, p(x,t +∆t)?  Let ∆t = τ.

Define an update rule for the bee’s position:

• Subtract p(x,t) from both sides

• Divide both sides by τ

• Divide both sides by λ2
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The next step may be easier to understand if we rearrange the 
quantity in the square brackets:

1)

Change in the rate of 
change per unit 
distance

If τ is small relative to the time scale we observe the bee and if λ is 
small relative to the spatial extent over which the bee forages:

2 2

2

( , )lhs(1)  

( , )rhs(1)  
2

p x t
t

p x t
x

λ
τ

∂≈
∂
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∂
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( , )rhs(1)  
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Allowing , the diffusion coefficient, 
2

and definfing ( , ), we have

                    

which is the one dimension equation for passive diffusion.

,

D

p p x t

p pDt x

λ
τ

=

≡

∂ ∂=∂ ∂

Interpretation
Given that p(x,t) is the probability of observing an 
individual bee at point x at time t, we can extend to many 
bees (N) by seeing that p(x,t)N = number of bees at bees at 
point x at time t, i.e., the spatial distribution of a population 
leaving a point at time t=0.
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Solutions for Simple Diffusion 
Models

( , )u x t
2

2

2

40

( , ) ( , )

( , )
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Dtπ
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=

Normal distribution with variance 
proportional to time

Derivation of Diffusion from Fluxes

• Mass or number of particles

• Motion takes place in a 
single dimension

• We are interested in spatial 
distribution of particles as 
function of time
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Derivation of Diffusion from Fluxes

( , ) concentration of particles at ( , )
( , )  flux of particles at ( , ) = number of

particles crossing a unit area  in the positive direction
per unit time

( , ) = rate of creation or elimination 

c x t x t
x t x t

x

x tγ

=
=J

per unit volume at ( , )
cross sectional area of tube

= volume of length element (∆x), i.e. 

x t
A

V V A x
=

∆ ∆ = ∆

Derivation of Diffusion from Fluxes

( , ) ( , ) ( , ) ( , )c x t A x x t A x x t A x t A x
t

γ∂ ∆ = − + ∆ ± ∆
∂

J J
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Derivation of Diffusion from Fluxes

( , ) ( , ) ( , ) ( , )c x t A x x t A x x t A x t A x
t

γ∂ ∆ = − + ∆ ± ∆
∂

J J

Dividing by :
( , ) ( , ) ( , ) ( , )

Taking the limit as 0:
( , ) ( , ) ( , )

A x
c x t x t x x t x t

t x
x

c x t x t x t
t x

γ

γ

∆
∂ − + ∆= ±

∂ ∆
∆ →

∂ ∂= − ±
∂ ∂

J J

J One dimensional 
balance equation

Derivation of Diffusion from Fluxes

One dimensional 
balance equation

( , ) ( , ) ( , )c x t x t x t
t x

γ∂ ∂= − ±
∂ ∂

J

2

2

2

2

( , )

Substituting:
( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , )

c x tD
x

c x t c x tD x t
t x x

c x t c x tD x t
t x

c cD x t
t x

γ

γ

γ

∂= −
∂

∂ ∂ ∂ = − − ± ∂ ∂ ∂ 

∂ ∂= ±
∂ ∂

∂ ∂= ±
∂ ∂

J
Flick’s law: flux due to 
random motion of particles is 
approximately proportionate 
to the local gradient in 
particle concentration.

One-dimensional reaction-
diffusion equation
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Reaction Diffusion Models
( ) ( )

2 2

2 2

( )

or, if the diffuusion coefficient is constant,

( )

u D u D u f u
t x x y y

u u uD f u
t x y

 ∂ ∂ ∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂= + + ∂ ∂ ∂ 

diffusive 
movement

reaction term, describes 
growth dynamics

2 2

2 2 1u u u uD ru
t x y K

 ∂ ∂ ∂  = + + −  ∂ ∂ ∂   

Logistic population 
growth plus random 
dispersal often used to 
model invasion.

traveling wave, each curve 
at greater t

K
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For a wide range of fucntions [ ( )] for population growth, 

the asymptotic rate of spread is 4 '(0) . This expression holds
whenever population growth rate is positive at  and when per 
capita growt

f u

f D
u K<

h rate is maximum when population is small.

Rate of Spread

Many Applications of PDE’s

• Invasion
• Interspecific competition
• Predator-prey
• Disease dynamics
• Critical patch sizes
• Pattern formation
• See Holmes et al.  1994 for review
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Limitations of PDE’s

• Does not apply to discrete time, space--
matrix or grid models more appropriate.  

• Represents disturbance poorly—questions 
of biodiversity and coexistence better 
illustrated with alternative approaches 
(Tillman 1994, Ecology 75:2-16).  

But, do thing in nature move 
randomly?

• Assumed randomness is a way to simplify 
movement processes that would otherwise 
be excessively detailed.

• Possible to explicitly include primary 
influences on movement (environmental 
heterogeneity, behavioral attraction, 
physical forces) while subsuming secondary 
influences into diffusion term.
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For example:

( )

( )

u u E
dt dx x

u uD E
dt dx x

α∂ ∂ ∂ =  ∂ 

∂ ∂ ∂ =  ∂ 

E is the environmental potential that increases as 
habitat quality decreases.  The function a(E) 
describes how E alters behavior.  This leads to 
distribution of organisms where E is lowest and 
habitat quality is greatest.

Represents organisms that move 
according to the average quality between 
their current location and neighboring 
sites.  Produces homogeneous 
distribution.

Types of Spatial Models

• Spatially Implicit
– single state variable
– multiple state variables

• Spatially Explicit
– grid based

• categorical
• continuous

– individual based
– reaction diffusion
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