4. Additional Examples of Reaction Diffusion Problems
(from Mathematical Biology, by Murray) A generalization of Fisher’s equation, is the

equation
OtU(X,t) = Ox(UMOxU(X,t)) + uP(1—u)? for m,p,q = positive parameters
More general still is the equation

Otu(X, t) = Ox(D(u) oxu(x,t)) + f(u)

but without specific information about the functions D(u), f(u) analytic solutions for this
eqguation are not possible. Moreover, by clever choices of the parameters, we can
gualitatively mimic more general D and f. Therefore we will consider the less general
equation and we will begin with the case where m=1= p = q.

Density Dependent Diffusion
Consider the equation

Otu(X, t) = Ox(uoxu(x,t)) + u(l—u). (4.1)

The density dependent diffusivity D(u) = u implies that the rate proportionality of flux to
gradient increases as u increases. This means that the flow from crowded regions to less
crowded regions proceeds at a higher rate at the crowding increases.

If we suppose u(x,t) = U(x—ct) = U(z), then
(U@)U'(2)) +cU'(2)+U@-U) = 0.
The associated dynamical system is

U(2) = V(2), (4.2)
U@)V'(2) = -cV(2) - V(2)> - U(1 - U)

where U(z) - 1 asz - -, U(z) > 0 as z—~ o, and (we hope) U'(z) < 0 all z We note that
the second equation in the system (4.2) is singular at U = 0. This singularity can be
removed by defining a new variable, s, given by

d _yd '(s) =
ds UdZ i.e, Zz(s) = U(2).

Then (4.2) becomes

U'(s) = UV (4.3)
VI(s) = ¢V — V2 - U(1-U),



with critical points at (U,V) = (0,0), (1,0), and (0,—c). Then

JU,V) = v v
| 2u-1 —c-2v

and it follows that:  (0,0) = a stable node, and (1,0), (0,—c) are both saddles.
For c small, say c = .3 we have

we see that there is no orbit joining (1,0) to either of the other critical points. For a slightly
larger value of ¢, say ¢ = .707, we have

i.e., in this case there is an orbit joining the saddle at (1,0) to the saddle at (0,—c). Note that
this trajectory tendsto U = 0, V = U’ = —c as s » . This means that the graph of



U versus z terminates at a point zo on the z-axis and U(z) = 0 for z > z,. The derivative is
discontinuous at this point as is jumps from V(zo —) = —¢, to V(z +) = 0. The trajectory in
this case is a straight line joining (1,0) to (0,—c), i.e., V = —c,(1 - U) where ¢ = ¢, denotes
the critical value of ¢ where this orbit occurs. It follows from the system (4.3) that on this
orbit

v —cV-V2-U(l-U)

du uv

hence if V = —c.(1 - U) then we can solve for c, to obtain ¢, = -1 Then

J2

! —_1 4_ —0) = =
U'(z) = & (1-U(z)) and U(-0) =1, U(z) =0
implies
U(z)=1—exp(ﬂ) if z<zo
=0 if z> 2z

For c > c. we have an orbit joining (1,0) to (0,0) and this results in the usual sort of
travelling wave.

Other exercises we could try would include examining the effect of increasing m, p and q
above the value 1, testing the stability of such solutions and trying to obtain perturbation
approximations for these solutions.

Having considered some examples of TW solutions to scalar reaction diffusion equations,
we will consider now the existence of TW solutions to systems of such equations.

Rabies Epidemic in Foxes
Consider the following simple model for the spread of rabies in a population of foxes. Let

S(x,t) = the number of susceptible foxes at location x at time t
I(x,t) = the number of infected foxes at location x at time t.

Then the following equations

Ot(X,t) = —r Yx,t) I(x,1)
ol (x,t) = rSx ) I(xt) —al(xt) + Dowl(X1),

assert that the number of uninfected foxes decreases at a rate that is jointly proportional to
the numbers of infected and uninfected foxes. The proportionality factor is denoted by

r > 0. The second equation asserts that the number of infected foxes increases in the
corresponding way but there is also a loss due to deaths of infected foxes. The death rate is



denoted by a > 0. Finally, the number of infected foxes is also affected by movement of
these foxes which is reflected in the diffusive term in the second equation.

If S(x,0) = S > 0, then we can reduce these equations to dimensionless terms by letting

_ T =/L __a_
t_rso’ X rS b rS’

o(z,7) = %, n(zt) = W?U

and

Then
0:0(z,t) = —on

0:n(z,7) = on—bn+ 0zn.
We are looking for solutions o(z,7) = f(z—cr), n(z,r) = g(z- cr) such that
c—>landn-0as z- « (noinfections ahead of the wave)
o' > 0andnn— 0as z- —o (no infections behind the wave and ¢ = constant).

These conditions correspond to an pulse of infection propagating into an initially uninfected
population and leaving behind a (possibly) positive number of survivors. It is assumed that
all infected foxes eventually die.

These assumptions lead to
-cf'(2) = -f(2)9(2)

-¢g/'(29) = f(2)9(2) -bg(2) + 9" (D).

Then g(z) =c ff’((_zz))
and -cg/(2) -g'(2) = cf'(z) —bc ffl((—zz))
Then —cg(z) - g'(2) = cf(z) —bclogf(z) + Co,

and the conditionas . z - «© implies ¢+ Co = 0. Then

—cg(z) -g'(2) = cf(z) —bclogf(z) - c,



and
f'(2) = L f(2)902),

9'(2) = —cf(2) + bclogf(z) + c - cg(2).

Note that f' = 0 on the axes, f=0, g=0, while g =00n g=blogf-f+1 These are
the so called "null clines” where the derivatives vanish. The critical points of the dynamical
system are located at the intersections of these null clines; i.e., at f =1, g =0 and at
f=1o, g=0, forsome fo, O < fop < 1. The direction field near the null clines is shown on
the following sketch.
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Now the Jacobian of the system is

il
C
—C

%
‘](f!g) = bC
T —-C

hence at (1,0) we have 1 = %[—ci Jc?—4(1-b) ]
at (fo,0) we have 1 = %[—ci JC%+4(b—fo) ]

making (fo,0) a saddle point for all values of ¢, while (1,0) is a stable focus when

c? < 4(1-b) and a stable node when c? > 4(1 - b). The stable focus leads to a heteroclinic
orbit with both negative and positive values for g, which is not admissible when g denotes a
population value. Then the physically reasonable solutions are associated with

c? > 4(1-b), which defines a minimal speed for travelling wave solutions. The phase plane
portrait in this case is as shown below
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The heteroclinic orbit joining the saddle at (fo,0) to the stable node at (1,0) is the travelling

wave

Note that fo, as the solution of blogf = f—1, is an increasing function of the parameter

_ _a
b_rSo’



f-1, blog(f) versus f
Then as the death rate of infected foxes, a, increases or as the infection rate for the
uninfected foxes, r, goes down the survival level fo goes up. This is exactly as you would
suppose. On the other hand, fo, goes down as S, the initial number of uninfected foxes
goes up. This is less to be expected.

Transport of a Chemical Solute

Consider a tube of uniform cross section A containing a porous medium (soil) through
which a fluid containing chemical solute is flowing. As the solute moves through the porous
medium, some of the solute comes out of solution and sorbs to the soil. Conversely,
chemical which is sorbed to the soil can dissolve in the solute and move away from the
sorption site. We will derive a model for this process and examine it for existence of
travelling wave solutions.

pore space

Let ¢ denote the porosity, the fraction of total volume that can be occupied by fluid. Then
the state variables for describing the transport of chemical solute through the soil are as
follows

g(x.t) = flux of solute at (x,t)
C(x,t) = solute concentration at (X,t)
N(x,t) = mass concentration of solute sorbed to the soil



Let (a,b) and (t1,t2) denote an arbitrary interval of the tube and an arbitrary interval of time
during the process, respectively. Then the conservation of solute statement for this process
is,

b b t t to ¢b
J #C(xt2) Adx = [ $C(x,tr)Adx+ j: q(a,t) Adt — j: q(b,t) Adt — j:jaatN(x,t) dxdt.
In the usual way, this is becomes
[Z12#aC+ 0, +aiNydtx = 0
1

and, since (a,b) and (t1,t2) are arbitrary,
¢ 0:C(X,t) + 0xq(X,t) + OtN(x,t) = O at each (x,t).
We suppose that solute flux is composed of two parts,

q(x,t) = —-DoxC(x,t) + S pBC(x,t)?

diffusion bulk transport

where the first term is the usual diffusion mechanism while the second part reflects
transport by movement of the chemically contaminated fluid through the soil.

Finally, there are various ways in which, N(x,t), the mass concentration of chemical that
has been sorbed to the soil can be related to, C(x,t) , the concentration of of chemical in
solution. In order of increasing complexity, three possible choices are

D) N(x,t) = a C(x,t)

i) AN = B(No = NOG))

iii) 6N, t) = RN, C) = K( C’;'(féz
0

- N(x,t))

The first choice is mathematically simple but physically not very realistic. The second
choice is more realistic in that it recognizes that the sorption rate must depend on the
current value of N and it assumes there is some maximum value for the amount of solute
that can be sorbed to the soil. Finally, the last choice treats the sorption rate as depending
on the current value of both C and N. The following figure shows the curve where R = 0. To
the left of this curve we have 0:N(x,t) < 0 and to the right, 0:N(x,t) > 0.



Then we have the following model for this process

¢ 0tC(X, 1) — DOoC(X, 1) + 9 BC(X,t) 0xC(X,t) + OtN(x,t) = 0

NoC? )
OiN(X 1) — K -N(xt) | =

This is equivalent to

0:(N/No) = 0

01(CICo) — 0x(CICo) + (CICo) 0x(CICo) +

BC </>BC ¢BC2

Reducing this to dimensionless form by letting

_C N $#BCo $B2C}
G—CO, n—NO, Z=X1—— D T = D ,
we obtain
0:0 + 00,0 + B0 = 070
0 +k( __o? )— 0
o T 1402 ’
where

— No k = KD
p Cog’ ¢BC3

Now we suppose  o(z71) = f(z—vr), and n(z7) = g(z—Vvr)
where

f,g- 0 as z- o

f,\g'>0 as z—»> -



This amounts to assuming the concentrations of solute and sorbed chemical ahead of the
wave are zero and are equal to unknown constants (to be determined) behind the wave.
Then our system of equations reduces to

~vf' +ff' - pvg’' ="

It follows from integrating the first equation that
f'(&) = $1%(&) - vi(&) - Bva($)

Evidently this system has the following null isoclines

_ f(f—2v)

f=0 on g 2B

(a parabola)

f2
=0 = R=0
g on  g=—- ( )

The null isoclines are shown in the figure:

w'=x (=2 -wl-bwy bh=25
¥ '=y - xS+ 2P w=11
g'=0
L — f'=0
Frint I
Cluik |
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The isoclines meet at the origin, which is one of the critical points for the system. This
critical point can be shown to be a saddle point. The other critical point is located where the
null clines meet in the first quadrant; i.e.,

2pvf = (f—2v)(1 +?)
or
f3—2vf2+ (1-2pv)f-2v=0.

For each v > 0O, this cubic has a positive real root fo and then

2

(fo,go) with go = 1 j_ofz is a critical point for the system. .
0

It would appear that there is a heteroclinic orbit joining (fo,go) to (0,0) and such an orbit
would be associated with a TW joining the state (fo,go) at £ = —oo to (0,0) at £ = w. Since
we cannot solve for (fo,go) without explicit values for B,v we cannot determine the type of
critical point (fo,go) is. (For the values used to generate the figure, it is an unstable node).
However, it is evident from the figure that the direction field of flow points out of the region
W that is bounded on the sides by the two null clines and on the bottom by g = 0. This
means that if we proceed backward in time along the heteroclinic orbit that arrives at

(0,0) at £ = +o, the direction of flow is into the region W and that the heteroclinic orbit can
therefore not leave W through any of the three boundaries. In fact, since the side
boundaries are null isoclines, the orbit cannot cross either of these without violating
uniqgueness. Then the orbit must tend to the critical point (fo,go) as & - —o, and the
corresponding travelling waves then appear as follows
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