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Abstract
Each year, millions of people worldwide die from

infectious diseases such as measles, malaria,
tuberculosis, HIV. While there are many complicating
factors, simple mathematical models can provide much
insight into the dynamics of disease epidemics and
help officials make decisions about public health policy.
In this talk, I will discuss two of the classical, and still
much used, deterministic epidemiological models for
the local spread of a disease. I will then consider a
reaction-diffusion model, Fisher’s equation, and a new
integro-differential equation model for the spread of an
epidemic in space.
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Introduction

� Epidemics in History

– Plague in 14th Century Europe killed 25 million
– Aztecs lost half of 3.5 million to smallpox
– 20 million people in influenza epidemic of 1919

� Diseases at Present

– 1 million deaths per year due to malaria
– 1 million deaths per year due to measles
– 2 million deaths per year due to tuberculosis
– 3 million deaths per year due to HIV
– Billions infected with these diseases
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Introduction, Continued

� History of Epidemiology

– Hippocrates’s On the Epidemics (circa 400 BC)
– John Graunt’s Natural and Political Observations made

upon the Bills of Mortality (1662)
– Louis Pasteur and Robert Koch (middle 1800’s)

� History of Mathematical Epidemiology

– Daniel Bernoulli showed that inoculation against
smallpox would improve life expectancy of French
(1760)

– Ross’s Simple Epidemic Model (1911)
– Kermack and McKendrick’s General Epidemic Model

(1927)
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The Simple Epidemic, or � � , Model

� We divide the population into two groups:

– Susceptible individuals,
�
	���

– Infective individuals,
��	���

�� �� �

� Assumptions

– Population size is large and constant,
��	����� ��	����� �

– No birth, death, immigration or emigration
– No recovery
– No latency
– Homogeneous mixing
– Infection rate is proportional to the number of

infectives, i.e.
� � �����
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�� ��������

� A pair of ordinary differential equations describes this
model:  � � � !"�����#	���$��	��� � � � �����#	���$��	���

� But
� � ��	����� ��	���

, so this is equivalent to

��	��� � � ! �#	��� � � � �����#	���%	&� ! �#	���'
The differential equation is known as the logistic growth
equation, proposed by Verhulst (1845) for population
growth.
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� We have a nonlinear ODE, � � � �����#	���(	)� ! �#	���'
This is separable so we divide,*�#	���(	)� ! �#	����  � � � ���
and integrate,+

, *�#	���%	&� ! �#	����  � �  � � +
, ���  �

-/. +10
-/. , 0 *2 	&� ! 2   2 � +

, ���  �
*� -/. +10

-/. , 0 *2 � *� ! 2  2 � +
, ���  �

35476 	 2 8! 476 	&� ! 2 :9 -/. +10;=< -/. , 0 � ���>� �
Some algebra gives

�#	����� ��	&?@A��#	)?@B� 	)� ! �#	)?C'ED=F#G$HJI +
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� We have the logistic curve

�#	����� ��	&?@A��#	)?@B� 	)� ! �#	)?C'ED=F#G$HJI +
As

�LK � M
,
� K �

, so everyone becomes infected.
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The General Epidemic, or � ��N , Model

� We divide the population into three groups:

– Susceptible individuals,
�
	���

– Infective individuals,
��	���

– Recovered individuals,
� 	���

� �� � �������� O@�

� Assumptions

– Population size is large and constant,��	���B� �#	����� � 	����� �
– No birth, death, immigration or emigration
– No latent period
– Homogeneous mixing
– Infection rate is proportional to the number of

infectives, i.e.
� � �����

– Recovery rate is constant
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� �� � �������� O@�

� A system of three ordinary differential equations
describes this model: � � � !"�����#	���$��	��� � � � ������	���'�
	���8! O@�#	��� � � � O@�#	���
or, equivalently,  � � � !"�����#	���$��	��� � � � �����#	���$��	���P! O@�#	���

� 	��� � � ! ��	���P! �#	���
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� We have the nonlinear system � � � !"������	���'�
	���  � � � �����#	���$��	���8! O@�#	���
Divide to get  � � � O ! ���������� � O����� ! *
which is separable and gives a conserved quantity

�
	���B� �#	���P! O��� 476 �
	����� ��	)?@B� �#	)?CP! O��� 476 �
	&?@
� Similarly,  � � � !"�����#	���$��	���  � � � O@�#	���

gives � � � ! ���O �
	��� Q ��	����� ��	)?@RD F�S�TU .7VP. +)0 F VP. , 0W0X ��	)?@RD F S�TU I Y ?
Not everyone gets infected.

MATHEMATICAL MODELING OF EPIDEMICS 10



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

I(t
)

S(t)

I(t) versus S(t)

M
AT

H
E

M
AT

IC
A

L
M

O
D

E
L

IN
G

O
F

E
P

ID
E

M
IC

S
11



� How many new infectives are caused by a single infective
introduced into a population consisting entirely of
susceptibles?

In this case the second ODE at the time the infected is
introduced is  � � Z 	����>� ! O[R�#	���]\
So if

���>� ! O Y ?
then

��	���
increases.

Define, the basic reproductive number,

� , � ���>�O
and so if

� , Y *
then

��	���
increases and we have an

epidemic.
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Fisher’s Equation

� Let
�
	��_^�`a

and
��	��_^�`a

be the density of susceptibles and
infectives

� Assumptions

– Population density is constant,
��	��%^�`a�� ��	��_^�`a�� �

– No birth or death
– No recovery or latent period
– Only local infection
– Infection rate is proportional to the number of

infectives, i.e.
� � �����

– Individuals disperse by a diffusion process, with
diffusion constant b

� The pair of partial differential equations describes the
model c �c � � !"�����#	��_^�`d$��	��_^�`a�� b

cfe �c ` ec �c � � ������	��_^�`a$��	��%^'`d�� b
cfe �c ` e
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� Or, equivalently,��	��%^�`a � � ! �#	1`�^$��c �c � � �����#	��%^�`a(	)� ! �#	��%^�`a��� b
cfe �c ` e

The PDE is known as Fisher’s Equation. It was
introduced by Fisher (1937) for the spread of a gene in a
population.

� We look for traveling waves.

Let
�#	1`�^$���� g�#	ihC

with
h � ` ! jk�

. Then the PDE becomes
an ODE,

! j  g� h � ��� g��	ihC%	&� ! g�#	&hC��� b  e g� h e
� This has two equilibria,

g� � ?
and

g� � �
.

Linearizing about
g� � ?

gives the linear ODE

b  e g� h e � j  g� h � ���>� g��	ihCl� ?
which has a solution of the form

g�#	&hC�� m Don@p
.
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� Thus, we have the characteristic equation

b q
e � j q � ���>� � ?

and so q � ! j�r j e ! s b ���>�t b� If
j e ! s b ���>� u ?

, then q � 2 r vxw
and

g�#	&hC�� D ; p 	)m y{z'| 6 	1w}hC�� m e#~5� z�	1w}hC�
But that means for some

h
,
g�#	ihC�u ?

.

� We require
j e ! s b ���>� X ?

, which implies� j � X j%�l��� � t b ���>�
� For many initial conditions, the solutions of the PDE tend

to the traveling wave with minimum wave speed.
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A New Model

� Same idea as Fisher’s Equation, except with general
dispersal

� Assumptions

– Population density is constant,
��	��%^�`a�� ��	��_^�`a�� �

– No birth or death
– No recovery or latent period
– Only local infection
– Infection rate is proportional to the number of

infectives, i.e.
� � �����

– Individuals leave at rate b
– Proportion of individuals leaving � and going to

`
is� 	1`�^ � 

� The pair of integro-differential equations describes the
modelc �c � � !"������	)`�^$��'�
	)`�^$��8! b ��	1`�^$��

� b � � 	1`�^ � $��	 � ^$��  �c �c � � �����#	1`�^$��'�
	)`�^$��8! b �#	1`�^����� b � � 	)`�^ � A�#	 � ^$��  �
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� Equivalently,�
	)`�^$�� � � ! ��	)`�^$��c �c � � �����#	)`�^$��%	&� ! �#	)`�^$��'8! b �#	)`�^$��
� b � � 	)`�^ � A�#	 � ^���  �

� We assume
� 	1`�^ � �� � 	)` ! �  and � � �

� We look for traveling waves.
�#	1`�^'���� g�#	ihC

withh � ` ! j]�
gives

! j  g� h � ��� g�#	ihC%	)� ! g�f	&hC�P! b g��	ihC�� b � � 	&h ! � �g�#	 �   �
� This has two steady-state solutions,

g�f	&hCl� ?
andg�#	ihCl� �

. Linearizing about
g�#	&hC�� ?

gives the linear
integro-differential equation

! j  g� h � ����� g�#	&hC8! b g��	ihC�� b � � 	ih ! � �g�#	 �   �
which has a solution of the form

g�#	&hC�� m D F�� p
.
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� This gives the characteristic equation

��j"� ���>� ! b � b � 	&�J
where � 	&�Jl� � � 	 2 ED � ;  2

� We look for non-oscillatory wave fronts, which gives the
minimum wave speed parametrically,

j ����� � b � � 	&�@���>� � b � * ! � 	i�J�� � � � 	i�J��
� For many initial conditions, solutions of the full IDE tend

to the traveling wave with minimum wave speed.
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Conclusion

� Infectious diseases are a major health problem
throughout the world

� Mathematical modeling can help to better understand
the spread of infectious diseases and to test control
strategies

� The simple mathematical tools presented here are the
basis for much of mathematical epidemiology

� For greater accuracy for small populations we must use
stochastic models

� Diffusion is a very limited framework for dispersal and
can be replaced by a more general dispersal
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