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Abstract

Spatially isolated outbreaks of insects should spread into surrounding, unoccupied

patches barring the presence of other factors. Two potential factor hindering their

spread is the presence of predators or parasitoids and large spacing between habitat

patches. We examine under what conditions parasitoids can slow and or prevent

the spread of outbreaks of insects. We examine two models: a single population

Allee effect model and a host-parasitoid model that has the possibility of creating

an Allee-like effect. The presence of an Allee effect is vital in creating significant

slowing of spread– increasing habitat spacing without a concomitant increase in

dispersal mortality or the presence of parasitoids that do not cause an Allee-like

effect has no impact on spatial spread. However, spread cannot be stopped by in-

herent Allee effects alone. Spread can be stopped only in the presence of significant

spacing between patches. Furthermore, only inherent Allee effects in combination

with significant habitat spacing can stop spread for an indefinite period of time.
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An Allee-like effect of parasitoids can only slow or stop spread for a finite period of

time. We compare our results with the spread of a spatially isolated outbreaks of

an herbivore outbreak of the western tussock moth (Orgyia vetusta). The bound-

ary of the outbreak is located where habitat spacing increases consistent with our

hypothesis.

Key words: Spatial spread, spatial pattern, host-parasitoid dynamics, habitat

spacing, Allee effects

Introduction

The cause of spatial patterns of abundance of species is a fundamental question

in ecology (Tilman and Kareiva 1997). Such patterns are the result of underlying

patterns in ecological factors such as resources and predators and the tendency of

species to move. Outbreaks of insect herbivores can be striking examples of such

spatial patterns (Ludwig et al. 1979, Berryman 1987, Maron and Harrison 1997).

Frequently, such outbreaks spread from an initially small area of high density. Al-

ternatively, other outbreaks persist for periods of time without spreading. Under-

standing why some outbreaks spread and others do not should reveal important

details in the ecology of the herbivores (Hastings 1999).

Most theoretical analyses of spread have focused on the spread of single species and
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have ignored possible strong interactions with other species (Skellam 1951, Fisher

1937, Andow et al. 1990, Kot 1992), though see (Okubo et al. 1990, Cruywagen

et al. 1996, Hart and Gardner 1997). This work has emphasized that spread rates

are usually dependent on two factors: the amount of long distance dispersal and

the intrinsic rate of growth. An exception to this is when there is an Allee effect

(Kot et al. 1996, Lewis and Kareiva 1993). In that case, many factors are important

including the amount of short distance dispersal and whether habitat is discrete or

not. In some cases where there is an Allee effect, the spread can be stopped if the

habitat is discrete (Keitt et al. 2001).

In this paper, we develop a series of explicitly spatial models of single species popu-

lations and host-parasitoid interactions that we use to explore what role parasitoids

play in altering or stopping the spread of their host. In particular, we examine the

influence of parasitoids and the spacing of the host habitat and possible interactions

between these factors on the spread rate of a herbivore outbreak. We then examine

the applicability of the general results to the well studied system of spatial pattern

of the Western Tussock Moth (Hastings et al. 1997, Maron and Harrison 1997),

especially in examining a possible role for habitat spacing in preventing the spread

of the moth.
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Models and Analysis

Spread in seasonal, single species models, effect of Allee effects and habitat

spacing

We first describe a model of an single population distributed in one spatial dimen-

sion. The one dimensional model is used because it allows simple concepts of spread

to be demonstrated. Later, we will examine a model of the interaction of a insect

population with a parasitoid. Since we are largely concerned with herbivorous insect

outbreaks, we use a discrete time model reflecting the fact that many herbivorous

insect species that exhibit outbreak dynamics have non-overlapping generations.

This situation is well modeled with the use of integro-difference equations (IDE’s).

The general form for these models is

Ht+1(x) = λ

∞∫
−∞

kH(x, y)F (Ht(y))dy (1)

where H(x) is the density function on x of herbivore numbers, F (H) is the func-

tion describing density-dependent population growth in the herbivore and λ is its

intrinsic rate of increase. kH(x, y) is the kernel describing the movement of the her-

bivore from location y to location x (Kot and Schaffer 1986). Movement kernels are

typically probability density functions, but need not necessarily integrate to one (re-

flecting dispersal mortality). Throughout the paper we assume there is no dispersal

mortality. Additionally, we, as is typically done for mathematical convenience and

parsimony, assume the dispersal function takes the form kH(x, y) = kH(|x− y|), re-

flecting the assumption that dispersal is symmetrical. The spatial spread properties
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of Equation 1 are well studied (Kot et al. 1996, Kot 1992, Neubert et al. 2000). The

general result is that in the absence of an Allee effect, i.e. the per capita growth

rate of the population is maximized at a limit of zero, the rate of spread is only

dependent on shape of kH at its tails (|x− y| >> 0) and the value of λ.

In the presence of an Allee effect, the dynamics of spread are qualitatively different.

Kot et al. (1996) used a simple model of an Allee effect to examine these effects.

We use a slight variant of this model to examine the effect of habitat spacing on

spread. The model assumes that if the population is below a threshold, c, in one

generation it is at zero in the next, while if it is greater than or equal to c, it moves

to the carrying capacity, K, in the next generation.

F (H) =K

= 0
H ≥ c
H < c.

(2)

This model can be rescaled using H ′ = H/K and c′ = c/K so that

Ft+1(H ′t) = 1
= 0

H ′t ≥ c′

H ′t < c
′.

(3)

Using results from Kot et al. (1996), population invasions will have negative velocity

(the population range will recede) when

λ/2 > c′, (4)

and will have positive velocities (increasing population range) otherwise.

We further explore the effect of Allee effects by adding discontinuous habitat to the

model. We envisage a one-dimensional series of equal-spaced patches with governing
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equations:

H ′t+1(i) = λ
∞∑

j=−∞
kDH(|i− j|)F (H ′t(j)). (5)

In order to make comparison between continuous and discontinuous habitats, we

convert a continuous kernel kH into the discrete kernel kDH . If we assume that

within a patch, individuals are uniformly distributed, and that r is the size of

the patch, then the probability of an individual moving from patch i to patch j is

expressed as

P (i, j) =

∫ (i−j)r+ r
2

(i−j)r− r
2

∫ r
2
− r

2
kH(x, y)dydx

2r
. (6)

We use a (admittedly crude) approximation of this to simplify the calculation of

the dispersal kernel where we substitute the value at the center of the patch for the

inside integral such that:

kDH(i− j) =

(i−j)r+ r
2∫

(i−j)r− r
2

kH(x)dx. (7)

A biological interpretation of this approximation is that all dispersers leave from the

center of their natal patch and move according to the continuous kernel. When they

settle, they move to the nearest patch. This form of discretization of habitat, unlike

others (Van Kirk and Lewis 1997,e.g.), does not explicitly model regions of space

that are habitat and non-habitat. Additionally, there is an implicit assumption that

there is no additional mortality as patch spacing increases. This assumption could

be relaxed.
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After each generation, in a given patch, the population is either 0 or λ, thus allowing

for calculation of the number of patches the herbivore will spread each generation.

As before, we assume that, initially, a large area has been colonized and is adjacent

to a large uncolonized zone. We consider the patches in the uncolonized zone and

label them sequentially starting with 1. Patch i will be colonized if the immigration

reaches the threshold, c’, i.e., if

c′ ≤ λ
i−1∑

j=−∞
kDH(|i− j|). (8)

The total number of patches that are colonized per generation (or lost if the pop-

ulation range recedes) is simply the greatest value of i that satisfies Eq.8 and the

rate of expansion or contraction is simply the product of this patch number and the

inter-patch spacing, r.

In order to get quantitative estimates for this spread rate we require an explicit

kernel function, kH . We show the results of the impact of spacing on velocity in the

case of the Laplacian (or double exponential) kernel,

kH(x) =
σ

2
e−σ|x|, (9)

in Figure 1. Increases in spacing generally have little effect on spread (either positive

or negative), except when spacing gets large enough to prevent spread (see Figure 1).

Also, at any given Allee threshold, zero velocities can be attained give the following

conditions (see Figure 2):

1
2
e−

σr
2 ≤ c′

λ
< 1− 1

2
e−

σr
2 . (10)
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Spread in the presence of parasitoids

In this section we follow a similar analysis to that of the previous section,but we

focus on host-parasitoid interactions. We start with a model of a continuous one-

dimensional general Nicholson-Bailey interaction for parasitoids and their hosts:

Ht+1(x) = λ

∞∫
0

F (Ht(y))G(F (Ht(y)), Pt(y))kH(x, y)dy

Pt+1(x) = c

∞∫
0

F (Ht(y))(1−G(F (Ht(y)), Pt(y)))kP (x, y)dy

(11)

here, Pt(x) represents the density function of parasitoids numbers on x, c is the

number of parasitoids produced per parasitized host, G(H,P ) is the proportion

of herbivores parasitized by the parasitoid and kP represents the dispersal of the

parasitoid. When creating discrete time models of host-parasitoid interactions with

intra-specific competition in the host, a model necessarily has an assumption about

the relative timing of the two events May et al. (1981). We have made the as-

sumption that parasitoids attack after intra-specific competition. This will be the

case for a majority of pupal parasitoids, which are generally the most important in

outbreaking species of herbivores(Berryman 1988, Cornell et al. 1998).

We are interested in systems that may produce s-shaped nullclines and lead to Allee

effects induced by the presence of parasitoids (McCann et al. 2000). We implement

this assuming the following functional forms:

F (H) =
Ht(y)

1 + λ−1
λ

Ht(y)
K

(12)
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where K is the carrying capacity,

G(F (H), P ) = e− aP
1+bF (H)

, (13)

where a is the parasitoid attack rate and b is the strength of the functional response,

kH(x) =
α

2
e−α|x|, (14)

kP (x) =
β

2
e−β|x|, (15)

where α and β are the dispersal parameters for the herbivore and the parasitoid,

respectively.The numerical analysis of this model is simplified by rescaling the vari-

able. By proper rescaling the model has only four parameters: γ = Kac (the maximal

population growth rate of the parasitoid) b̂ = bK (the strength of the functional

response) β̂ = β
α (the ratio of host movement to parasitoid movement) and λ. Note

that in Function 13, if b̂=0, there is a Holling Type I function response and a pos-

itive value for b̂ reflects a Type II functional response. Depending on the values of

b̂, we can get the requisite s-shaped nullcline for H (Figure 3).

We analyze these models using numerical simulations. A requirement of such simula-

tions is a discretization of space. In discretizing these equations, we create coupled

map lattices, which are representative of isolated patches, thereby making it im-

possible to simulate exactly continuous habitat. We mediate this effect by doing

simulations where inter-patch spacing is much less than the movement of the herbi-

vore. For all the simulations, initial populations of both herbivores and parasitoids

were set at near equilibrium levels over an area twice the size of the minimum area

needed for the parasitoid to persist (see Appendix). Unless otherwise stated, sim-
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ulations were carried out over a period of 300 generations. The rate of spread is

determined by how far the threshold density (set to the scaled density 0.0001) of

herbivores moved.

The presence of parasitoids reduces the rate of spread of an herbivore over this

duration of time (Figure 4). The effect on spread speed increased with increasing γ

and decreasing λ. The pattern depending on b̂ is more complex and it depends on γ.

When γ is small, large values of b̂ lead to faster spread. As γ increases, there is no

longer a monotonic effect of b̂. At intermediate values of b̂ there is the lowest spread

rate. The ability of parasitoids to stop the spread of outbreaks increases as their

dispersal ability increases (Figure 5). This effect typically occurs when parasitoids

move an order of magnitude greater than their host.

The slowing effect on spread can be so great as to completely stop the invasion

of herbivore populations. Herbivore spread is only prevented when there is Type

II functional response (i.e. b̂ > 0) and when there is a significantly large spacing

between patches (Figure 6). These two requirements are nearly identical to those

in the single species model, where an Allee effect and large spacing is required.

The effect of spacing is slightly different in the presence of parasitoids. As spacing

is increased there is continuous slowing of spread toward zero, rather than the

constant (with variation) decrease in the single species model.

So far, we have emphasized the spread rates over short period of time (200 genera-

tions). If we examine the effect over a longer time period, however, the results change

dramatically. In fact, over long periods of time, there is no effect of the presence of

parasitoids(Figure 7). The zone of negative population growth around the outbreak
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is of limited spatial extent. However, according to the model described, dispersal of

the host is infinite. As a result, herbivore populations will emerge separated from the

main population (Figure 8). This exemplifies how spread over long time periods is

fundamentally determined by the long dispersal events and subsequent population

growth.

A Comparison of Predictions with a Real System

Applying models to a specific system allows us to examine the predictions of the

model present. We look specifically at the prediction that spacing of patch in concert

with a parasitoid- induced Allee effect can lead to the stopping of spread of herbivore

populations. The system we investigate involves the spatially limited outbreak of

Orgyia vetusta present in the coastal grasslands of the Bodega Marine Laboratory

on the coast of California (Brodman et al. 1997, Harrison 1997, Hastings et al. 1997,

Maron and Harrison 1997). McCann et al. (2000) have described the aspects of this

system that tend it towards zero spread rate due to the presence of parasitoids:

female O. vetusta are flightless and disperse on a small scale (on the order of 4-8m

per generation (Harrison 1997)), while the parasitoids disperse over a much wider

area (Brodman et al. 1997). Additionally, there is strong evidence of a an Allee effect

caused by the presence of parasitoids emerging from the outbreak. Just beyond the

edge of the outbreak, parasitism rates are much higher than within the outbreak,

then decrease further away from the outbreak (Brodman et al. 1997, Maron and

Harrison 1997).
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Two hypotheses now exist as to why the parasitoid induced Allee effect leads to the

preventing of spread of herbivore outbreaks. One previously postulated reason for

the zero spread in continuous habitat has been the presence of a reflecting boundary

(Hastings et al. 1997). Our work here suggests that patch spacing may be important.

A simple way to assess the plausibility of this hypothesis is to compare the density of

O. vetusta and the spacing of its habitat. In this system, we consider each individual

host plant (bush lupines of either Lupinus arboreus or L. chamissonis) bush to be

an independent patch, which is reasonable given that larvae generally stay on on

bush throughout development. Our prediction from this work is that the spread

would be halted when spacing of plants increases to a point where actual movement

to adjacent bushes is greatly reduced. Figure 9 shows that, at least visually, there

appears to be a concordance between these two variables. The rapid change in

herbivore density occurs at an inter-patch spacing of approximately 4-6 meters.

Discussion

The concepts of spatial spread and spatial pattern have generally been consid-

ered separately. Generally, theoretical examinations of spatial pattern have focused

on diffusive instabilities, which examine the propensity for spatially homogeneous

equilibrium to give way to heterogeneous patterns across the entire landscape. Our

approach focuses on an individual area of high density and the role parasitism plays

in slowing or stopping the spread of that area.

This approach allowed us to show that the extent of the outbreak of O. vetusta
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O. vetusta may be explained by an inability to spread due to interaction between

the activity of parasitoids and the spatial arrangement of their host plant. The

importance of parasitism in this system has been the focus of previous work(Maron

and Harrison 1997, Hastings et al. 1997, Wilson et al. 1998). However, our results

emphasize that a secondary factor, in addition to the parasitoid induced Allee effect,

is necessary to prevent the spread of regions of high density. Further experiments

and observations of this system, and other similar systems, should examine the

impact of the spacing of habitat patches of the host.

This raises the issue of what allowed for stable pattern in earlier models of this

system and in other models of spatial patterning. Hastings et al. (1997) showed

that the presence of a reflecting boundary was one such mechanism. The early

models of spatial patterning in predator-prey systems used a different mechanism

(e.g. Mimura and Murray 1978). The pattern in these models was repeated through

space. Therefore, from the perspective of an individual region of high density, spread

was halted due to the presence of a nearby region of high density. In the case of

Orgyia vetusta such a region was not present. The location of the outbreak on a point

of land provided boundaries on at least one side suggesting that the mechanism of

Hastings et al. (1997) may be important in determining the size of the outbreak.

There is a clear similarity between the model we examine and that which is described

by Keitt et al. (2001). Indeed, from their analysis of a single species model with an

Allee effect, they suggested that habitat spacing may play an important role in the

patterning of O. vetusta. Important insights are gained by examining the two species

case. Clearly, it reveals that parasitoids can produce the Allee effect necessary for
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spatial patterning, a prediction already tested in the O. vetusta system (Maron

and Harrison 1997). It also predicts that spatially isolated outbreaks will have a

minimum spatial extent (see Appendix) that will support a parasitoid population.

Outbreaks below this size will spread unimpeded by either parasitoids or the spacing

of their habitat.

An even more important difference, however, is that the parasitoid induced Allee

effect is present over a spatially restricted area surrounding the outbreak. The main

result of this difference is that spread inhibition is not indefinitely effective. Long

distance dispersal by the herbivores will eventually lead to establishment of popu-

lations at a distance from the original outbreak. In this framework, spatial patterns

are not permanent features of the environment, but rather transient phenomena.

An analogy can be made from this slowing of spread to the culling of fox as a means

to delay the spread of rabies (Murray et al. 1986).

Detecting transient pattern was facilitated by our use of numerical simulations. An

alternative analysis would be to examine traveling wave solutions to the equation

(e.g. Kot 1992). While this has not been done for two variable IDE’s, traveling

wave solutions have been examined for reaction-diffusion equations of predator-

prey interactions (Owen and Lewis 2001, Dunbar 1986). The most relevant to our

case is that of Owen and Lewis (2001) which examined the joint invasion of predator

and prey. In accord with the results presented here, they found that discrete habitat

was necessary to allow stable solutions. In contrast to our results, the presence of

predators alone could not slow the invasion of prey species without the further

slowing effect of Allee dynamics in the prey species. Owen and Lewis (2001) assume
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a traveling wave solution and analyze the requirements on the speed of that solution.

This approach emphasizes the spread of low densities a long distance from the area

of higher density, which in a sense is an analysis of the spread over long periods of

time. Our results over long periods of time agree with the traveling wave analysis.

Also, Owen and Lewis (2001) predict that spread can be reversed by the predators.

We have not found this under the parameter values we have tried. If this were the

case, there would be an outbreak size that would be stable. This can be reasoned

because there is a minimum size of the outbreak to support parasitoid populations.

As the invasion front recedes, the number of parasitoids supported by the prey

population declines until recession rate goes to zero. Under this situation, there

would be a spatial scale of stable spatial pattern.

The model we analyze is deterministic and randomness may have an influence on

our results. Stochastic models of single species spread show that spread is slower

in such systems compared to deterministic ones due to the long term population

growth rate being reduced in stochastic models (Neubert et al. 2000, Lewis 2000).

We suspect that a similar effect could occur in a two species model. In addition,

random fluctuations in dispersal and fecundity could be important in pushing pop-

ulations above the parasitoid induced Allee threshold, further reducing the stability

of the pattern, or alternatively, speeding the spread of the outbreak. We know of

no analysis of this type of effect in either multi species or single species model.

Our approach to habitat spacing takes into consideration only one type of effect. Sev-

eral additional effects may or may not exist in specific biological systems. Oviposit-

ing females may select areas of high host density (Root 1973) further reducing den-
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sities in isolated patches. Changes in the demographic rates, especially increased

mortality (Yamamura and Yano 1999) have been identified among herbivores and

this effect can make widely spaced patches uninvadable (Van Kirk and Lewis 1997).

Parasitoids could have similarly higher mortality in widely spaced patches as for-

aging behavior can be risky (Heimpel et al. 1997). Also, the additional travel time

between individual patches reduces the foraging efficiency of parasitoids and can

have dramatic effects on population dynamics (Weisser and Hassell 1996).

Parasitoids have been a key tool in biocontrol of invading pest herbivore species

(Waage and Greathead 1989). Traditionally, their role has been to suppress already

established high density populations of herbivores rather than to limit their spread.

Their ability to do this has been mixed, with some parasitoids becoming estab-

lished without significant reduction in the density of the pest species, while others

either fail to establish or establish with little effect on their target host (Waage and

Greathead 1989). Our results suggest that even in the case where parasitoids do not

control established populations, the parasitoids may prove a tool to slow the spread

of the herbivore, as long as they disperse over a much wider area than their host.

While halting and reversing invasions is the most desired result of managers, slowing

invasions can provide large economic benefits, despite not preventing the eventual

invasion Sharov and Liebhold (1998), Sharov et al. (1998). Also, such slowing could

provide additional time to examine other methods to manage the invasion.

A frequent criticism of ecological theory is that it oversimplifies systems in its pursuit

of explanation. Murdoch et al. (1997) have proposed methods of developing sets of

models of varying complexity to relate to each others. Comparison of these models
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to real systems allows for the understanding of the effect of complex mechanisms

that are difficult to test in real systems. We see our current model as a relatively

complex part of such a family of models that include host-parasitoid models and

models of single species spatial spread models (Hastings 1997, Wilson et al. 1998,

McCann et al. 2000, Keitt et al. 2001, Owen and Lewis 2001). By placing our current

study in the context of these previous studies we have been able to isolate the role of

habitat spacing in determining the spatial pattern of outbreaks of insect herbivores

and provide a testable hypothesis for describing the extent of the outbreak of O.

vetusta at Bodega Head.

Appendix

We describe our method of determining the minimum outbreak size to support a

parasitoid population. The methods for this were described by Kot and Schaffer

(1986) for single species model, and are similar to those in continuous equations

(Kierstead and Slobodkin 1953, Skellam 1951, Okubo 1980). We use the nondimen-

sionalized form of the equations 12, 12 and 13 and 15 scaling so that h = H
K , p = aP ,

x̂ = xα , ŷ = yβ γ = Kac, b̂ = bK, β̂ = β
α . The model is

ht+1(x̂) = λ

∞∫
0

F (ht(ŷ))e−G(F (ht(ŷ)),pt(ŷ)) 1
2
e−|x̂−ŷ|dŷ

pt+1(x̂) = γ

∞∫
0

F (ht(ŷ))(1− e−G(F (ht(ŷ)),pt(ŷ))
1
2
β̂e−β̂|x̂−ŷ|dŷ.

(16)
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where F (h) = h
1+λ−1

λ
h

is the host density dependence function and G(h, p) = p

1+b̂h

is the parasitism function.

In the absence of parasitoids the herbivore will attain a positive equilibrium when

h = λ. We now assume the herbivore densities are constant, and taking the para-

sitoid equation separately:

pt+1(x) = γ

L∫
0

λ(1− e−
pt(ŷ)

1+b̂λ )
1
2
β̂e−β̂|x̂−ŷ|dŷ. (17)

We examine the stability of the solution p = 0 over values of L. If the zero solution is

stable, then parasitoids cannot persist. The value of L where the solution becomes

zero represents the minimum outbreak size to allow for parasitoid colonization.

Taking results from Kot and Schaffer (1986) we get

L∗ =
2
2
β̂

√
1 + b̂λ

γλ
arctan

√
γλ

1 + b̂λ
. (18)

Hence, we can predict the minimum outbreak size to allow the persistence of para-

sitoids.
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1 Figure Captions

Figure 1. Impact of habitat spacing on invasion speed of an herbivore with an Allee

effect. When the Allee threshold is greater than 0.5, the population retracts. As

habitat spacing increases, the number of patches invaded or lost iteratively decrease,

creating the the saw-edge shape.

Figure 2. Conditions for forward, backward and no movement of an herbivore inva-

sion as a function of Allee threshold and inter-patch spacing.

Figure 3. Nullclines for the non-spatial model of host-parasitoid interaction. The

herbivore nullcline is the solid line and the parasitoid is dashed. The top figure

represents a case where there is a Type 1 functional response (b̂ = 0) so there is not

a hump in the nullcline and no possibility for a spatial Allee effect. Below there is

a Type 2 functional response (b̂ = 4), leading to the hump-shaped nullcline so that

the system is susceptible to spatial Allee effects. For these nullclines, γ = 14 and

λ = 10.

Figure 4. The impact of interaction parameters on the spread of an herbivore out-

break. The spread is measured in non-parametric units of host-dispersal equivalent

to the standard deviation of the host kernel, see Equation 5. The horizontal line

on top of each graph represents the spread rate in absence of parasitoids. Here, the

parasitoid movement is much greater than the herbivore (β̂ = .001).

Figure 5. Effect of relative movement ability of parasitoid on the spread of an

herbivore outbreak. For these simulations, λ = 6 and b̂ = 2.
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Figure 6. Impact of inter-patch spacing on the spread of an herbivore outbreak. The

threshold spacing that allows for spread changes greatly with the value of γ. In both

cases, b̂ = 4.

Figure 7. Change in spread rate of an herbivore invasion over time. The curves

represent the point of furthest spread as a given time and the slope of the curve

represents the spread. The top curve is an example with no parasitoids present,

the middle, where parasitoids are present with Type I functional response, and the

bottom with Type II functional response.

Figure 8. Spread of an herbivore outbreak under parasitoid exploitation. Curves

depict the distribution of hosts at 20 generation intervals (curves further to the

right are later in time). The top shows spread when there is large inter-patch spacing

(r = 2.4) and the bottom when patches are close (r = 0.8). In both cases, there is

a region at the edge of the invasion where growth is inhibited by parasitoids, but

at larger distances, this inhibition is not important. For these simulations λ = 10,

γ = 12 and b̂ = 3.

Figure 9. Relationship between inter-patch spacing and herbivore density in Orgyia

vetusta. The edge of the outbreak represents an increase in the spacing of the host

plant, Lupinus arboreus, (a) and the concurrent herbivore density (b). In both (a)

and (b) the pattern has been emphasized with a locally weighted regression. In (c),

we plot the local weighted fits against each other.
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