
4 PARTIAL DIFFERENTIAL EQUATIONS

In the work we have done so far we have only been concerned with the dependence of
something on one variable, e.g. the deformation as a function of location, the number of
animals or the concentration of some chemical species as a function of time. However, in
many situations this is not enough information. In the case of the spread of a disease across
the countryside, such as rabies in foxes across the UK, we would be interested not only in
the number of infected animals, but also in their general location. In other words, as well as
knowing the dependence on time, we would like to know how widely the disease has spread.
Thus we must include spatial considerations in our models. To do this we need to consider
functions of several variables, such as f(x, y, t), where f depends on space (x, y) and time t. It
is probably a good idea to revise the basic ideas of functions of several variables from previous
courses at this point.

4.1 Basic considerations

An equation involving one or more derivatives of an unknown function of two or more
variables is called a Partial Differential Equation. The most general pde of 1st order in two
independent variables is

F (x, y, u, ux, uy) = 0.

Some pde occur repeatedly in different problems.

(i) ut + cux = 0 – transport, traffic flow, waves in shallow water.

(ii) utt = c2uxx – 1-D wave eqn. – seismic, water, sound waves.

(iii) ut = αuxx – 1-D heat/diffusion eqn. – heat transfer, population or disease spread, mod-
elling turbulence, spread of solute in solvent, groundwater flow...

(iv) uxx + uyy = f(x, y) – 2-D Poisson eqn. If f(x, y) ≡ 0 it is called Laplace’s eqn. – Steady
state temperature distribution, deflection of membranes, electrostatics, gravitation, fluid
dynamics, groundwater flow.

(v) ut − iuxx = 0 (i =
√
−1) – quantum mechanics

(vi) ut + uux + uxxx = 0 – dispersive waves

Example

As an example of deriving a partial differential equation, we consider a simple model of the
flow of blood cells in a vein or artery. We consider a small section of a circular tube of fixed
cross-sectional area, A (cm2), containing blood flowing with velocity c(x, t), (cm/s) and with
cell density ρ(x, t) (cells/cc), where x (cm) is the distance along the vein. The change in the
total number of blood cells within a section of the vein of length ∆x can be calculated as the
number of cells that flow in minus the number that flow out.

c(x,t)

x x+dx

c(x+dx,t)

dx
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The number that flow in at x in time ∆t is ρ(x, t)c(x, t)A∆t while the number that flow out
at x + ∆x is ρ(x + ∆x, t)c(x + ∆x, t)A∆t. Check that these have the right units, i.e. are a
number. This must equal the difference in the total number of cells within at the two times,
i.e we have

N(t+∆t)−N(t) = Inflow −Outflow

ρ(x, t+∆t)A∆x− ρ(x, t)A∆x = ρ(x, t)c(x, t)A∆t− ρ(x+∆x, t)c(x+∆x, t)A∆t

and dividing by A∆t∆x gives,

ρ(x, t+∆t)− ρ(x, t)

∆t
=
ρ(x, t)c(x, t)− ρ(x+∆x, t)c(x+∆x, t)

∆x

and letting ∆x∆t→ 0,
∂ρ

∂t
= −∂(cρ)

∂x
or, ρt + cρx + ρcx = 0,

and if c is constant this reduces to ρt + cρx = 0. This is known as the advection or transport
equation, and models particles that are carried along with the motion of a fluid. In fact it is
a simple model only of these things, because much has been neglected, but it does show how
an equation can be derived, and how a function can depend on both location and time.

In general, it is very difficult to solve pdes. It was hard enough to solve ODEs. There are
some ways, but usually for simple geometry, e.g. rectangles, circles. Here we will cover several
methods including separation of variables with Fourier series and numerical methods.

A general 2nd order pde has the form

Aφxx + 2Bφxy + Cφyy +Dφx + Eφy + Fφ+G = 0,

where A,B,C,D,E, F,G are all functions. If G ≡ 0, i.e. every term contains the dept.
variable or one of its derivatives, the pde is homogeneous, otherwise it is inhomogeneous. If
A−G are functions of x and y only, then the equation is linear. If any of D−G are functions
of φ, φx, φy then the equation is quasilinear, i.e. linear at least in the highest order terms.

A linear equation has the property that if L is a differential operator, then

L{u+ v} = L{u}+ L{v},

and also has the property that if we add two solutions to a given equation, then the sum is
also a solution.

Example

Show that the equation utt − uxx + εu2 = 0 is linear if ε = 0, and not linear otherwise.

Consider u+ v,

∂2(u+ v)

∂t2
− ∂2(u+ v)

∂x2
+ ε(u+ v)2 =

∂2u

∂t2
− ∂2u

∂x2
+
∂2v

∂t2
− ∂2v

∂x2
+ ε(u2 + 2uv + v2)

so that
L{u+ v} = L{u}+ L{v}+ ε2uv,

and so is linear provided ε = 0.
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The method that is used to solve a 2nd order pde is often dependent upon what type of pde
it is. Second order, linear PDEs such as that above are classified as;

If B2 −AC = 0, then the equation is said to be parabolic.

If B2 −AC > 0, it is hyperbolic.

If B2 −AC < 0, it is elliptic.

Example

The method of characteristics for a hyperbolic pde gives the so-called d’Alembert’s solution
to the wave equation, φtt − c2φxx = 0, φ = f(x− ct) + g(x+ ct). Show this is a solution.

φt = f ′(x−ct).(−c) by the chain rule, and so φtt = c2f ′′(x−ct). Similarly, φx = f ′(x−ct).1,
and also φxx = f ′′(x−ct), so φtt+φxx = c2f ′′(x−ct)−c2(f ′′(x−ct)) = 0. The calculation for
g is almost the same. Note this solution represents two signals, one moving to the left with
velocity c and the other to the right with the same velocity. The initial condition is that at
t = 0, φ(x, 0) = f(x) + g(x).

Notice that in this classification the wave equation is hyperbolic (A = 1, B = 0, C = −1,
so B2 − AC = 1 > 0), the heat/diffusion equation is parabolic (A = α,B = 0, C = 0, so
B2−AC = 0) and Laplace’s equation is elliptic (A = 1, B = 0, C = 1, so B2−AC = −1 < 0).
These equations turn out to be canonical in the sense that any linear, 2nd order pde of
each type can be transformed into the corresponding form. These equations all have constant
coefficients but that is not necessary, and there are many situations in which the nature of
the equation can change in different regions of space, i.e they may be elliptic in one region
and parabolic in others.

Example

An example of these changes occurs in the Tricomi equation,

uξξ + ξuηη = 0.

The equation describes the transonic (near the speed of sound) flow of air over an aircraft.
(This equation is derived using perturbation methods.) Note that if ξ > 0 then this equation
is elliptic and if ξ < 0 it is hyperbolic reflecting different behaviour when the air is travelling
faster or slower than the speed of sound. (It is parabolic if ξ = 0.)

If a pde has derivatives with respect to only one independent variable, then it can be solved
as if it were an ordinary DE, but one must always keep in mind that the constants in the
solution to an ODE must now be functions of the other independent variables.

Example

1. Solve uxy = 0. Integrating with respect to x, uy = f(y), and then with respect to y, gives
u =

∫

f(y)dy+ g(x) = h(y) + g(x). Note that
∫

f(y)dy is just some function of y. Check by
differentiating. Notice that integrating zero with respect to x gives a function of y, while
integrating zero with respect to y gives a function of x.

2. The pde uxx − u = 0, where u = u(x, y) has the solution u = f(y)ex + g(y)e−x. This can
be obtained as you would for a 2nd order ODE, i.e. let u = eλx etc. but remember that the
“constants” must be functions of y. Check by differentiating.
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This means that the solution to a pde will in general have arbitrary functions in it, rather
than constants (as for ODE). The values of these functions are determined by the boundary
and initial conditions. Unlike ODEs, a linear pde may have many solutions. A unique solution
is determined by the initial and boundary conditions. Implementing these initial and boundary
conditions can sometimes be a bit confusing at first. In the next section we will see the
geometric meaning of this, but here is an example just to see how it works.

Example

The general solution to 4ux − 3uy = 0 is u = f(−3x − 4y). If we know that u = y2 when
x = 0, what is the solution?

The boundary condition gives that f(−4y) = y2, or f(w) = (−w
4 )

2, (let w = −4y), and so
the solution is u = f(−3x− 4y) = (− (−3x−4y)

4 )2 = ( 34x+ y)2.

Checking: we see ux = 2(
3
4x+ y) 34 , and uy = 2(

3
4x+ y).1 so that 4ux − 3uy = 6( 34x+ y)−

6( 34x+ y) = 0, and also u(0, y) = y2. We will do more of these as we go along.

Exercises

1. Consider the derivation of the advection equation given at the start of this section. Check
that you understand each term and work out the dimensions of each term and check that
they match. How would the derivation change if the area of cross-section, A, were also a
function of x and t, i.e. A(x, t)?

2. Which of the following operators are linear?

(a) Lu = ux + xuy (b) Lu = ux + uuy (c) Lu = ux + u2
y

3. Solve the following pde, assuming the solution is a function of (x, t)

(a) uxx = 0 (b) tut = 2 (c) utt + u = 0

4. Show by substituting that the given functions are solutions to the given equations.

(a) aux + buy = 0, u(x, y) = f(bx− ay) (b) ux + yuy = 0, u(x, y) = f(ye−x)

5. The solution to ut + 3ux = 0 is u = f(x− 3t). Show this is true, and then find the solution
with the initial condition u(x, 0) = sin 2x.

6. Classify the partial differential equations as hyperbolic, elliptic or parabolic,

(a) 2uxx − 2uxy + 5uyy + 3ux − u+ 1 = 0 (b) 4uxx + uxy − uyy − u+ 4xy = 0.

Solutions

2 (a) Linear (b),(c) Nonlinear

3 (a) u(x, t) = xf(t) + g(t) (b) u(x, t) = 2 ln t+ f(x) (c) u = f(x) sin t+ g(x) cos t

5 f(w) = sin 2w ⇒ u(x, t) = sin 2(x− 3t).
6 (a) elliptic (b) hyperbolic

4.2 Linear first-order equations

We will begin by considering 1st-order partial differential equations. The book by Strauss,
Partial Differential Equations - An introduction might be useful if you want another source
here. In principle, it is possible to get a solution to any quasilinear first-order pde. Once we
know something about equations of this type, we will use them to derive and analyse traffic
flow, an important problem in design of the urban environment.
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Suppose we wish to solve the homogeneous, linear, 1st-order pde given by

f(x, y)ux + g(x, y)uy = 0, with u = r(x, y) on y = s(x).

The condition u = r(x, y) on y = s(x) is a general boundary or initial condition, such as
u(x, y) = y2 on x = 0. We will look at the general case first.

Suppose there is a special set of curves in the xy-plane on which the solution u = u(x, y)
is equal to a constant (this is almost certain to be true). If we can find this special set of
curves, then we can use it as a new coordinate (and the problem would then only have one
independent variable). If u is known on y = s(x), and the lines on which u is constant are
known, then it should be possible to find the values of u everywhere – see the figure below.

y=s(x), u is known along
here

u=constant along each

Since u is known along y = s(x), then from the intersection points, it must be known
along all of the other curves, so it is known everywhere. This means that if we can find the
set of curves on which u is constant, then we have solved the pde. These curves are called
Characteristics and are very important in obtaining solutions for these and higher order pde’s.

Consider the chain rule applied to a function u(x(t), y(t)), where t is a parameter, then if u
is constant along the curve parameterised by (x(t), y(t)), then

du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
= x′(t)ux + y′(t)uy = 0.

This is a generalisation of the chain rule in one dimension. If we compare this with the
first-order pde of the form,

f(x, y)ux + g(x, y)uy = 0,

we see that they are the same if

x′(t) = f(x, y) and y′(t) = g(x, y)⇒ y′(t)

x′(t)
=

g(x, y)

f(x, y)
,

an ODE for y(x). In other words the solution to this DE is the set of curves on which u(x, y)
is constant (since du

dt
= 0), i.e the characteristics.

Example

Solve the pde ux − 2uy = 0 subject to the condition that u = x3 on y = 0.
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Using the above results we see that f = 1 and g = −2 so the characteristics are given by
dy

dx
=

g

f
= −2

⇒dy = −2dx
⇒y = −2x+ C

i.e. β = y + 2x = a constant

so the lines which satisfy β = y + 2x for different β are the characteristics, i.e. u =const.
along these lines, so the general solution must be of the form u = f(β) = f(y + 2x). You can
check this by substituting; ux = 2f

′(β) and uy = f ′(β) using the Chain Rule, so ux− 2uy = 0
checks. Now we also know that u = x3 when y = 0, so f(2x) = x3 ⇒ f(β) = (β2 )

3, which
means that the solution is u(x, y) = 1

8 (y + 2x)
3.You should check by substituting that this is

the correct answer.

Here is a more complicated example, but the method is exactly the same.

Example

Solve the pde ux + xy2uy = 0 with the condition u = x2 on y = 1.

Using the above results, we see that f = 1 and g = xy2, so the characteristics are given by

dy

dx
=

g

f
= xy2

⇒dy

y2
= xdx

⇒− y−1 =
1

2
x2 + C

i.e. β =
1

2
x2 + y−1 = a constant

These are the characteristic curves, and that means that u = u(β). This is where it gets a
bit tricky. In effect, we have that u depends on β = 1

2x
2 + y−1, i.e. the general solution is

u = f(
1

2
x2 + y−1).

Now we also know that when y = 1, u = x2, so we should be able to determine the function,
i.e.

u = f(
1

2
x2 + y−1)|y=1 = f(

1

2
x2 + 1) = x2,

which means that the function f operates by subtracting 1 and then multiplying by 2 (or let
α = x2/2 + 1⇒ x2 = 2(α− 1)⇒ f(α) = 2(α− 1)), i.e.

u = 2

[(

1

2
x2 + y−1

)

− 1
]

,

i.e, the solution is

u(x, y) = x2 +
2

y
− 2.

We should check this;

ux = 2x, uy =
−2
y2
⇒ ux + xy2uy = 2x−

2xy2

y2
= 0 correct; and on y = 1, u = x2.
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Exercises

1. Show that the general solution of the pde aux + buy = 0, where a, b are constants, is
u = f(bx− ay), either by substituting or directly finding it as above.

2. Find the general solution to the following linear, homogeneous pde’s.

(a) wt + xwx = 0 (b) 2xux + uy/y = 0

3. If u = f(x, y) is the general solution to a pde, find the particular solution for the boundary
information given.

(a) u = f(3x− y2), u = y2 on x = 1 (b) u = f(x2 − y), with u = 2 cos y on x = 0.

4. Solve the following equations with the given conditions.

(a) ux + 2xy
2uy = 0 with u = y on x = 0 (b) yux + xuy = 0 with u(0, y) = e−y2

.

Solutions

2 (a) w = f(e−tx) (b) u = f(y2 − lnx)
3 (a) u = 3 + y2 − 3x (b) u = 2 cos(y − x2)

4 (a) u = y/(yx2 + 1) (b) u = ex
2
−y2

4.3 Nonhomogeneous equations.

The model of traffic flow that we will derive unfortunately does not turn out to be linear.
How can we extend our method to the more general nonhomogeneous and quasilinear cases?
The general quasilinear equation is

f(x, y, u)ux + g(x, y, u)uy = h(x, y, u), with u = r(x, y) on y = s(x).

The answer to this question is to notice that if we have the solution u = φ(x, y), it will be a
surface in x, y, u space. Differentiating with respect to t, we obtain

du

dt
=
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt
.

This is satisfied in the partial de if

du

dt
= h(x, y, u),

dx

dt
= f(x, y, u) and

dy

dt
= g(x, y, u),

so, for a change in t, i.e. dt =
du

h
=
dx

f
=
dy

g
. (∗)

This gives a set of curves which lie within the solution surface. The projections of these
characteristic curves in (x, y, u) space onto the xy-plane are called the characteristic traces.
We can satisfy the conditions in (*) in most cases by solving one pair and then eliminating
the other variable. The best way to see this is to do an example.

Example

Solve the nonhomogeneous pde xux + yuy = 1 + y2 given that u(x, 1) = x+ 1.
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Using the above, we have that

du

1 + y2
=
dx

x
=
dy

y
,

so using the last two, we get that y = βx, for some constant β. In other words, the charac-
teristic traces are some function of β = y/x. We can now note that

du

1 + y2
=
dy

y
⇒ du =

(1 + y2)

y
dy ⇒ u = ln y +

1

2
y2 + C(

y

x
).

It is very important to notice that C depends on y/x. The reason for this is that we are
integrating along a characteristic trace, on which y = βx, so if there is a function of y/x it
will not appear.

We must now use this and the extra condition u(x, 1) = x+ 1 to determine the value of u.
If y = 1, then

u = x+ 1 = 0 +
1

2
+ C(

1

x
) = x+ 1

so that C( 1
x
) = x+ 1− 1

2 = x+ 1
2 , and hence (let α = 1/x⇒ x+ 1

2 =
1
α
+ 1

2 ),

C(
y

x
) =

x

y
+
1

2

and therefore

u(x, y) = ln y +
1

2
y2 +

x

y
+
1

2
.

Once again, we should check that we have the correct solution.

ux =
1

y
, uy =

1

y
+ y − x

y2
,

⇒xux + yuy =
x

y
+ 1 + y2 − x

y
= 1 + y2

and u(x, 1) = 0 +
1

2
+ x+

1

2
= x+ 1

,

and satisfies the equation and condition.

To solve this we have done something very similar to the earlier example. We have found a
set of curves on which u is known, and then used the boundary condition to obtain values on
those particular curves, as shown below.

Characteristic traces,
y=Ax

y=1, u=1+x2

x

y
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The order in which you choose to integrate these equations is not important, in other words
since we are working with surfaces, it is almost like (x, y, u) are three coordinates, rather than
u(x, y), i.e. u being a function of x and y.

Example

Solve the nonhomogeneous pde ux + 2xuy = y given that u = 1 on y = x2. We have

dx

1
=
dy

2x
=
du

y
⇒ 2xdx = dy or y − x2 = β

then
du

x2 + β
= dx⇒ u =

1

3
x3 + βx+ f(β) =

1

3
x3 + (y − x2)x+ f(y − x2)

and so when y = x2, u = 1⇒ 1 = 1
3x

3+ f(0). This can not be satisfied in general. If we look
at the boundary condition, we can see why this is so – the boundary condition is applied along
one of the characteristic traces !! The only way this can work is if the boundary condition
matches exactly the behaviour along the characteristic trace given by the equation, otherwise
there is no solution. If it does match, then there are an infinite number of solutions.

Example

Consider the same problem as above, but with the boundary condition u = 1
3x

3 + π on
y = x2. The general solution is as before, i.e. u = 1

3x
3 + (y − x2)x + f(y − x2), and the

boundary condition gives f(0) = π. In this case, the boundary condition can be satisfied,
but anything for which f(β = 0) = π is an acceptable solution. In other words there are an
infinite number of solutions !!

This means one should be very careful if the boundary data is specified along one of the
characteristic traces, since no information is available to go to the other characteristics. There
are sometimes ways around this, but we will not cover them in this course.

Example

Solve the nonhomogeneous pde yux + uy = x subject to u(x, 0) = x2.

dx

y
=
dy

1
=
du

x
⇒ dx = y dy ⇒ x =

1

2
y2 + β

⇒x− 1
2
y2 = β ⇒ dy =

du

β + 1
2y

2
⇒ (β +

1

2
y2) dy = du

⇒u = βy +
1

6
y3 + f(β)

so that the general solution is (noting β = x− y2/2),

u(x, y) = xy − 1
2
y3 +

1

6
y3 + f(x− 1

2
y2).

Applying the initial condition, we obtain that

u(x, 0) = x2 = 0− 0 + 0 + f(x)⇒ f(x) = x2
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so that the particular solution is

u(x, y) = xy − 1
3
y3 + (x− 1

2
y2)2.

Checking: u(x, 0) = x2 checks, and yux = y2 + 2y(x− 1
2y

2), uy = x− y2 − 2(x− 1
2y

2)y and
therefore yux + uy = x checks.

The quasi-linear case is much more convoluted than the nonhomogeneous case, and often
the best we can do is get an implicit form for the solution. We will not consider them in this
course, but the procedure is the same.

Exercises

1. Solve the following problems.

(a) ux + (x− 1)uy = u subject to u = e2x on x+ y = 0.

(b) ux + 2xuy = y with u(0, y) = 1 + y2.

(c) x2ux + yuy = x2 with u = 3x on y = 1

Solutions

(a) u(x, y) = exp(x+
√

x2 − 2y − 2x)
(b) u(x, y) = yx− 2

3x
3 + 1 + (y − x2)2

(c) u(x, y) = x+ 2
(ln y+ 1

x
)

4.4 A model for road traffic flow

This example comes from the book An Introduction to Mathematical Modelling by Fowkes
and Mahoney. This section is very difficult and you will need to work through it very carefully
to understand what is going on.

Coming up with a model for traffic flow can be useful in planning streets or deciding on speed
limits which will clear a city block most quickly. It is an integral part of urban environment
design. We need to come up with a model that is simple enough to give some answers without
unnecessary hassles, but that has enough detail to reflect the true situation.

One way to start is to consider two particular points on the road and see how many cars go
past, and then derive equations accordingly. Obviously we have to choose sufficient distance
between the points for this to make sense. We want to avoid having distortions due to the
motions of individual cars, and concentrate on the general traffic flow. This is a bit like the
way in which fluid flow is modelled. We assume that the fluid is a continuum rather than a
bunch of molecules, so we consider volume elements that are large enough to be a continuum,
but small enough to apply the ideas of calculus. The end result in this case should be a
continuous model rather than a discrete model (they are usually easier to work with).

First, we need to define a set of variables. Let N(x, t) be the density of cars (no. cars per
metre) at any location. Let F (x, t) be the flux of cars past a particular point (no. cars per
time). These variables satisfy the relation F = NV , where V (m/s) is the velocity of the
flow of traffic. Our own experiences tell us that there is some relationship between the two
functions F and N , i.e. if the traffic is really dense, it tends to move move slowly. We also
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know that if the density is extremely small, then the flow past a particular point will be small,
and approach zero as the density approaches zero.

Consider that as the speed increases, the distance between cars increases (for safety), so the
density would be a decreasing function of speed, i.e. in general less cars in a given distance
if travelling at higher speeds. We also suggest that drivers will generally travel at some
maximum speed if there is little traffic, i.e. V → Vmax as N → 0, probably just over the
local speed limit. Finally, if the distance between cars is very small, then drivers will hardly
dare move, i.e. V → 0 as N → Nmax. A trial version of this relationship might be that
V (N) = Vmax(1−N/Nmax).

Given that F = NV = NV (N), an equation that
might be used is

F (N) = VmaxN(1−N/Nmax).

This model is consistent with what we observe. If the
density of traffic is small, the flux will be small (since
there are few cars), despite the speed being high, while
if the traffic density is high, the cars will be travelling
slowly, so once again the flux will be small.

Flux 
F(x,t)

Density, N(x,t)

There will be some point at which the flux will be a maximum, and this will correspond
to some particular density, N∗ (say). This maximum will depend on the situation, e.g the
number of lanes, the weather conditions etc. At any other flux, there will be two possible
solutions, one with high velocity and lower density, and one with lower velocity and higher
density. Obviously, the preferred option of the two is the one at the higher speed with lower
density, but it is not clear which situation will arise. It seems likely that the solution obtained
will depend on the initial conditions. For example, if the traffic has been heavy, then the
slower branch is more likely, but if it has recently been running smoothly, then it would seem
likely that the faster travel, lower density situation might arise. It is clear then that we need
to examine the unsteady situation in order to determine which final state (if any) will be
reached.

The model we have here is flawed in another way. At present the maximum flux occurs when
the velocity is one half of the maximum velocity, which seems particularly unlikely. There
is no reason why the optimum flow should occur at one half of an arbitrarily chosen speed
limit. One way to correct this is to take measurements of what this optimum value is and then
skew the flux vs. density relationship accordingly. This can be done by introducing a cubic
term and using its coefficient to match the optimum with the measured value. This could get
messy, so we will proceed with what we have - we should still be able to reproduce some of
the qualitative behaviour. Lets see how we get on.

Unsteady Model

To consider how the situation changes with time, consider the flow of traffic between two
points on the freeway, say x = a and x = b. The change in the number of cars between a and
b is

∂

∂t

∫ b

a

N(x, t) dx,

and this must match the flow into this region minus the flow out, i.e.

F (a, t)− F (b, t) = −
∫ b

a

Fx(x, t) dx.
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Equating gives
Nt + Fx = 0 = Nt + F ′(N)Nx,

noting that F (N) and using the Chain rule. This is our unsteady model for traffic flow. We
can try looking at the behaviour of this model for different functions F (N).

The first thing to notice is that F ′(N) has the units of a velocity. In fact this equation is
very similar to the one-dimensional advection equation,

ρt + cρx = 0,

which models the transport of some pollutant (or some other quantity) which has been released
in a stream, where ρ is the concentration and c is the speed of flow of the stream. Notice that
there is no diffusion term, i.e. αρxx. This is because for such a case the amount of diffusion
would be very small compared to the advection unless c was very small.

Getting back to this case, the form of F ′(N) will dictate the behaviour of the traffic. For
example, consider what will happen if F ′(N) = V where V is a constant. In that case, the
equation is Nt + V Nx = 0, which by the method of characteristics has the solution

dt

1
=
dx

V
⇒ x− V t = β ⇒ N = N(x− V t).

To see how this behaves, consider an initial condition that N(x) = g(x) where g(x) is as shown
below.

g(x)
0

x

0 g(x-Vt  )Vt

This represents a region where there is an increase in density at some point, e.g where some
traffic has caught up with cars leaving some lights, or where some traffic ahead has just merged
lanes. The second curve shows the solution a time t0 later. In other words if V is a constant,
then the original signal just propagates along the freeway retaining its shape all of the way.
This is what you would expect if you think about it - if all of the traffic is moving at the same
speed, then the original density function will just remain, but move along with that speed.

However, our discussion above lead us to a different form for the velocity as a function of
the density. Consider for a moment the general case, where F ′(N) is any function. What
can we determine about the flow ? This is a quasilinear equation, since N appears in the
coefficient of Nx. Recall our initial derivation of the solution of such a homogeneous equation.
It suggested that we have N constant on the characteristic curves, in this case given by

dx

dt
= F ′(N).

If we can integrate this equation, we can obtain the lines along which N is constant in the
xt-plane, i.e. the space time curves on which the density does not change. Note that if F ′(N)
is a constant, then the curves are simply the straight lines x− V t = β, and would appear as
below if sketched in the xt-plane.
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t

x

x-Vt=const.

N=g(x) at t=0

Once the starting density is specified, we can find the value at any later time at a particular
location by tracing the characteristic back to the initial time. If the value of F ′(N) is known
at the starting time at a particular point x, then it will equal x′(t), and since N is constant
along this characteristic, it will not change, and hence F ′(N) will not change as we move
along it, so the slope will not change. This means that the characteristics will be straight
lines that have slope F ′(N), which is determined by the starting value. Consider the following
two examples.

N(x) at t=0

x
(a)

N(x) at t=0

x
(b)

If we start with (a) the first situation (traffic density decreasing, e.g just after merging at Mill
Point entry), then if we examine our density vs. flux relation, we see that as N decreases, the
slope of F (N),i.e. F ′(N), increases, so that dt

dx
= 1/F ′(N) decreases. Thus the characteristic

curves will be straight lines with slopes shown as in (a) below, provided we are to the left of
the maximum flux case.

On the other hand, in the second case (b), just approaching Mill Point road before the
merging (say), then the slope F ′(N) will be decreasing as the density increases (again if we
are to the left of the maximum flux case). The characteristics in this case will look as in (b)
below.

x
(a)

x
(b)

t t

If the density is greater than the maximum flux situation then these plots would be reversed.
A plot of density at any time can then be calculated by drawing a horizontal line across these
plots, and working out the density values of each. If the characteristics are spreading out, as in
(a), this means that the density step is smoothing out as cars accelerate away. However, if the
characteristics are closing together, as in (b), this means that the density step is steepening up.
If we continue high enough up the t axis, these lines will eventually cross, which corresponds
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to multiple values of density, i.e. the step has steepened until it is vertical. This is a shock
wave. What it means physically is difficult to interpret from this model, because this model
will break down here. However, there are ways that analysis can be performed on either side
of the shock. Unfortunately, we don’t have time to do this.

Comments

1. The model we have derived is a very simple one, but nonetheless is able to reproduce most
of the behaviour that we witness in traffic flow situations. It is a reasonable basis for a
more sophisticated model.

2. The method we have used of examining the solution by following the characteristics is a
commonly used numerical technique for such equations, and also for second-order hyper-
bolic pde.

3. Using the discussion above, we can come up with a general idea of the traffic behaviour
given some starting pattern of traffic density, perhaps as shown in the upper line below.

A short time later, see the lower line above, places where the density decreases as you move
in the direction of flow will spread out, while those where it increases in the direction of flow
will steepen, so it looks a little like waves coming into the shore, but backwards (a situation
modelled by another, higher order pde which has similar properties). This would suggest that
a shock will always form, but other factors not modelled become significant, and a modification
to the model must be made. However, if the density increase becomes large enough, then a
shock will form. Lets consider a few cases.

If the traffic flow is reasonably clear, the steepening curve will probably clear the network
before it becomes a factor, since the traffic speed is high. As the density increases, the slope of
F (N) decreases, then the disturbance will travel more slowly, and so will affect more and more
cars. If the density reaches the value of maximum flux, then the value of F ′(N) will be zero, so
the disturbance will remain at a fixed location - a disaster !! Every car approaching it will be
affected. This situation is particularly nasty because it occurs at precisely the desirable flux
rate ! Finally, if N becomes greater than the maximum flux, then F ′(N) becomes negative,
and the disturbance propagates backwards into the traffic stream at quite a high speed, so
that a minor disruption ahead can cause a major disruption to the oncoming cars.

More situations are considered in Fowkes and Mahoney if you are interested. They consider
flow away from traffic lights and traffic jams in more detail, and also examine the shock waves
in more detail. We must move on to the next section, with a note that the ideas of signal
propagation examined in this example are relevant in a number of real situations. Shock waves
form in many other circumstances, such as supersonic flow (sonic boom), flow of water over
weirs (hydraulic jumps), etc....

Exercises

1. This is a very difficult problem. You will need to work through it very carefully. Consider
the equation

∂z

∂t
+ z

∂z

∂x
= 0.
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This equation describes the evolution of z(x, t), the free-surface elevation in a shallow stream.
Suppose also that z = g(x) at t = 0 is as shown below, i.e. this is the shape of the water
surface at t = 0.

(i) Obtain an expression for the characteristic emanating from some point x0, and show that

the slope in the x − t plane is given by
dt

dx
|x0

= 1/g(x0), and hence sketch a set of

characteristics for the function g(x) given below.

x

g(x)

z

(ii) Show that z = f(x − zt) is the general solution to this equation (be very careful here
- remember that z depends on x and t). Find z in terms of g given the above initial
condition. Consider the form of zx, and comment on the change in shape of the free
surface which you would expect as time goes on, giving your reasoning. Is there some
critical event, and at approximately what time would you expect it to occur?

Solution

(i) g(x0) is a constant for given x0 so characteristics can be written as x = g(x0)t+ C, a set
of straight lines with slope g(x0). Remember z = constant along these lines, so these lines
will have constant slope, and since 1/g(x0) increases, the slope will increase.

(ii) zt = f ′(x − zt)(−z − ztt) by the Chain Rule etc. Also, z = g(x) at t = 0 means f = g.
The wave will steepen and break when

zx =
f ′(x− zt)

1 + f ′(x− zt)t

becomes singular, i.e tc = −1/f ′(x− zt).
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