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Abstract

A reduction method is used to prove existence and uniqueness of strong solutions
to stochastic KPP equations, where the initial condition may be anticipating. The
asymptotic behavior of the solution for large time and space and the random travelling
waves are then studied under two different basic assumptions.

1 Introduction

There are numerous examples of wave phenomena in nature, and in biology there seem to be
particularly many. Some examples of such phenomena are insect dispersal, the progressing
wave of an epidemic (e.g. the spread of the Black Death in the 14th century and the
current rabies epizootic spreading across Europe), the movement of microorganisms into a
food source, and the spread of killer bees in South America. Detailed discussions on these
and many other examples can be found in [18].

The KPP equation

∂u

∂t
=

D

2
∆u + ru(K − u), (1.1)

where r > 0 is the reproduction rate, K > 0 the carrying capacity, and D > 0 the diffusion
coefficient, provides a (deterministic) model for the density u(t, x) of a population living in
an environment with a limited carrying capacity. We shall make the model more realistic
by introducing environmental noise. More precisely, we assume the carrying capacity is
stochastic and given by K(t) = c0 +kẆt, where c0 > 0 and Ẇt is white noise. Substituting
K(t) into (1.1) gives the stochastic partial differential equation (SPDE)

du(t, x) =

(
D

2
∆u(t, x) + ru(t, x)(c0 − u(t, x))

)
dt + ku(t, x) dWt. (1.2)

To make the problem well posed we suppose that the spatial distribution of the population
density at time t = 0 is known, u(0, x) = u0(x).

There are clearly other ways of introducing environmental noise in (1.1). In the spatially
homogeneous case, D = 0, different versions are discussed and compared in [7, 13, 14, 16,
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17, 20] . Some of these papers also contain discussions on whether the Itô- or Stratonovich-
interpretation of the equation is most appropriate. Note that the spatially homogeneous
case when the carrying capacity K > 0 is constant and r = r0 + αẆt has recently been
analysed in detail in [11, 15].

Equation (1.2) is a very simple model for a population living in a stochastic environ-
ment with limited carrying capacity. It is well known that under suitable conditions the
corresponding deterministic equation (1.1) develops travelling waves. In this paper we shall
study how the strength of the environmental noise influences the travelling waves which
are known to develop in the corresponding deterministic equation.

Generally, one would also like r, K, and D to be stochastic, time and space dependent.
Apart from the practical difficulties in analysing the behavior of the solution to an equation
with so many degrees of freedom, we also face the fundamental problem that (1.2) may fail
to have a solution in the usual sense. It is well known that solutions of many SPDE’s only
exist in some generalized sense or measure valued in multidimensions.

However, if the equation is interpreted in the Wick sense and within the context of the
Kondratiev space (S)−1 of stochastic distributions (see [12]), then it gets the form

∂u(t, x)

∂t
=

D

2
∆u(t, x) + u(t, x) � (c0 − u(t, x)) + k(t)u(t, x) � Ẇ (t, x).

It has been shown recently (see [10]) that if the initial values u(0, x) are specified then a
unique (S)−1 valued solution of this equation exists, for any space dimension.

In view of the above suppose u(t, x) solves the stochastic KPP equation

du(t, x) =

(
D

2
∆u(t, x) + u(t, x)c(u(t, x))

)
dt + k(t)u(t, x) dWt, u(0, x) = u0(x) (1.3)

for t > 0 and x ∈ R, where D > 0 and W = {Wt, Ft; t ≥ 0} is a Brownian motion. It is
well known that if c(u) > 0 for 0 < u < 1 and c(u) < 0 for u > 1, k ≡ 0 and u0 = χ(−∞,0],
then (1.3) has a unique solution and it tends to a travelling wave as time and space tend
to infinity, see e.g. [3, 5, 8, 18, 19].

Assume c ∈ C1(R+) is strictly decreasing, c0 = c(0) > 0, and there is θ0 > 0 such
that c(θ) ≤ 0 for all θ ≥ θ0, and k is not identically zero. The approximate travelling
wave solution to the stochastically perturbed KPP equation was studied and some com-
puter simulations of the solution were produced when u0 and k(t) are deterministic using
Hamilton-Jacobi theory, see [4, 6]. The authors showed that the asymptotic behavior of
the solution depends on the strength of the noise. If the noise is strong, the solution tends
to zero. If it’s moderately strong the solution may tend to a travelling wave (possibly trav-
elling at a reduced speed) or the wave may be destroyed. The solution tends to the same
travelling wave as the solution of the unperturbed deterministic problem, if the noise is
weak. In this paper we consider similar problems but with either u0 or k(t) being random.

First, we use an extension of the reduction method in [2] (see also [12]), to show that
(1.3) has a unique strong solution, when u0 is an FT -measurable random variable and k
is deterministic. Applying Itô calculus, we use a similar argument to prove the existence
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of a unique strong solution to (1.3) when u0 is F0-measurable and k is Itô-integrable on
compact time intervals. By a strong solution of (1.3) we mean that the solution u(t, x) is
almost surely twice continuously differentiable with respect to x. Precise definition will be
given in Section 3.

An implicit Feynman-Kac-like formula for the solution of (1.3) will be given. With this
formula it is possible to extend the ideas in [8] for the deterministic KPP equation, to study
u(t, x) for large times. We characterize the asymptotic behavior of the solution in terms of
k in two different cases:

Case (A) u0 = χ(−∞,f ], where f is an FT -measurable random variable for some T ≥ 0,
and k ∈ L2

loc(R
+) is deterministic; and

Case (B) u0 = χ(−∞,0] and k is Itô integrable on compact time intervals.

As in [4, 6] we find that the solution’s behavior depends on the strength of the noise. In
Case (A) we obtain the same limit behavior for a.e. ω, whereas we in Case (B) find that
the behavior is ω dependent.

If the noise is strong, that is if

lim inf
t→∞

1

2t

∫ t

0

k(s)2 ds > c(0) = c0 (1.4)

the solution in Case (A) almost surely tends to zero as time tends to infinity. In Case (B)
the solution tends to zero for a.e. ω for which (1.4) holds.

We say the noise is weak if
∫ ∞

0
k(s)2 ds < ∞. In Case (A) the solution of (1.3) a.s.

converges to the same travelling wave as the solution of the corresponding unperturbed
deterministic KPP equation, when the noise is weak. In Case (B) it converges to the same
wave for a.e. ω such that

∫ ∞
0

k(s, ω)2 ds < ∞.
When the noise is neither strong nor weak, we say the noise is moderately strong.

The asymptotic behavior of the solution to (1.3) is in this case analyzed using methods
from [4, 6]. We first compare the solution of (1.3) with the solution, w, of a random
partial differential equation, where ω only enters as a parameter. If in addition there
exist a2 ≥ a1 ≥ 0 such that 2a1 ≤ k(t)2 ≤ 2a2 for all sufficiently large t, we are able to
obtain asymptotic estimates on w. These bounds can then be used to obtain more explicit
estimates on u as time tends to infinity.

In the case where the initial function is anticipating and k(t) is deterministic, the
limit behavior obtained below agrees with what is found for the related problem studied
in [4], using different methods. When the initial condition is adapted and k is assumed
Itô integrable on compact time intervals we observe a more complex behavior, in the sense
that the solution’s limit behavior may depend on ω.

The paper is organized as follows: In Section 2 we give two results from white noise
analysis needed to understand the reduction method in Section 3, when the initial condition
is assumed to be anticipating. In Section 3 we show how existence and uniqueness results
can be obtained for (1.3). The asymptotic behavior of the solutions is studied in Section
4. In the final section we briefly discuss our results.
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2 Two Results from White Noise Analysis

We refer the reader to [12] for a comprehensive introduction to white noise analysis and
SPDE’s. Here we only mention two results which play an important role in what follows.
Let S ′ be the space of tempered distributions, B be the Borel σ-algebra on S ′, and (S ′,B, P )
denote the white noise probability space as it is defined in Chapter 2 in [12]. Let W =
{Wt; 0 ≤ t < ∞} be the Brownian motion given by the coordinate process and Ẇt denote
the distributional time derivative of Wt. If f is Skorohod-integrable, then∫ t

0

f(s) δWs =

∫ t

0

f(s) � Ẇs ds,

where the left hand side is interpreted as a Skorohod-integral (or Itô-integral if f is adapted)
and the right hand side as a Pettis integral in the space of tempered distributions (see e.g.
[12] page 45 for details). Here � denotes the Wick product. The definition of the Wick
product will not be needed in the following, since all Wick products that occur can be
expressed in terms of the ordinary product using Gjessing’s translation formula (see e.g.
Theorem 2.10.7 in [12]). This result says that if φ ∈ L2(R+) and X ∈ Lp(P ) for some
p > 1, then

(X � E∞(φ))(ω) = X(ω − φ) · E∞(φ, ω) a.s., (2.1)

where

Et(φ) := exp

(∫ t

0

φ(s) dWs −
1

2

∫ t

0

φ(s)2 ds

)
, 0 ≤ t ≤ ∞. (2.2)

3 Existence and Uniqueness of a Strong Solution

Let D > 0, c ∈ C1(R+), and suppose there is θ0 > 0 such that c(θ) ≤ 0 for all θ ≥ θ0. We
shall apply a reduction method to prove existence and uniqueness of a strong solution to

du(t, x) =

(
D

2
∆u(t, x) + u(t, x)c(u(t, x))

)
dt + k(t)u(t, x) dWt, u(0, x) = u0(x) (3.1)

for (t, x) ∈ R
+× R. The idea is to transform (3.1) into a deterministic equation that can

be solved for each ω, separately. We study Case (A) and Case (B) using different methods.
The Case (A) is shown using an extension of the white noise technique in [2], and the Case
(B) applying Itô calculus. We present a complete argument for the first case and sketch an
argument for the second, since it is similar.

Definition 3.1 A random field u : [0,∞) × R × S ′ → R is called a (strong) solution of
(3.1) if

(a) u(·, ·, ω) ∈ C0,2((0,∞) × R) a.s.,
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(b) u(t, x), ∆u(t, x) ∈ L2(dP ) for all (t, x) ∈ (0,∞) × R, and

(c) u satisfies (3.1) a.s. in the sense that for all 0 < t0 < t < ∞ and x ∈ R,

u(t, x) = u(t0, x) +

∫ t

t0

(
D

2
∆u(s, x) + u(s, x)c(u(s, x))

)
ds +

∫ t

t0

k(s)u(s, x) dWs a.s.

If u0(·, ω) is continuous a.s., the integral formulation holds with t0 = 0.

Remark 3.2 If (t, ω) �→ u(t, x, ω) is not Ft-adapted we interpret the stochastic integral in
(3.1) as

∫ t

0
k(s)u(s, x) � Ẇs ds and require the result to be in L2(P ). (This is often called a

generalized Skorohod interpretation of (3.1).)
Since u0 may have discontinuities, u will satisfy the initial condition in the sense that

for almost all x ∈ R,

lim
t↓0

u(t, x, ω) = u0(x) a.s.

(in fact for all x ∈ R at which u0(·, ω) is continuous.)

3.1 Anticipating case

In this section we prove existence and uniqueness of a strong solution to (3.1), when k ∈
L2

loc(R
+) and u0(x) is a stochastic, possibly anticipating, random variable for x ∈ R.

To obtain the existence and uniqueness theorem we will extend the method in [2]. Let
Et(−k) be given by (2.2) for (deterministic) k ∈ L2

loc(R
+) and note that

d

dt
Et(−k) = −k(t)Ẇt � Et(−k), 0 < t < ∞.

If u solves (3.1) and v(t, x) := u(t, x) � Et(−k), then

∂

∂t
v(t, x) =

(
D

2
∆u(t, x) + u(t, x)c(u(t, x))

)
� Et(−k).

The definition of v and Gjessing’s formula gives

∂

∂t
v(t, x, ω) =

D

2
∆v(t, x, ω) + v(t, x, ω)c(u(t, x, ω + kχ[0,t])).

Another application of Gjessing’s formula shows that v(t, x, ω) satisfies equation

∂
∂t

v(t, x, ω) = D
2
∆v(t, x, ω) + v(t, x, ω) c(Et(−k, ω)−1v(t, x, ω))

v(0, x, ω) = u0(x, ω)
(3.2)

for almost every fixed ω ∈ S ′.
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If a classical solution, v(t, x, ω), of (3.2) is known for a.e. ω ∈ S ′, then

u(t, x, ω) = v(t, x, ω − kχ[0,t])Et(−k, ω − kχ[0,t])
−1 = v(t, x, ω − kχ[0,t])Et(k, ω) (3.3)

is a solution of the original problem (3.1).
This shows that to solve (3.1) it is sufficient to solve (3.2), where ω only enters as a

parameter. Then (3.3) gives a solution of (3.1). Moreover, if (3.2) has a unique solution,
the solution of (3.1) is unique as well.

To prove (3.2) has a unique solution for almost every ω ∈ S ′ one may apply any method
for deterministic nonlinear parabolic PDE’s. A contraction method yields:

Proposition 3.3 Let D > 0, c ∈ C1(R+), and let k ∈ L2
loc(R

+) be deterministic. Suppose
there exists θ0 > 0 such that c(θ) ≤ 0 for all θ ≥ θ0. Assume u0 ∈ L∞(S ′; L∞(R)) is such
that x �→ u0(x, ω) is piecewise continuous and nonnegative for a.e. ω ∈ S ′. Then (3.1) has
a unique strong solution.

Proof: We begin by proving (3.2) has a unique classical solution, v, for a.e. ω ∈ S ′. Let
F ⊂ S ′ be a set of 1 measure on which t �→ Et(−k, ω) is continuous and x �→ u0(x, ω) is
piecewise continuous.

Fix any T > 0 and ω ∈ F . A classical solution of (3.2) has to satisfy

v(t, x, ω) =

∫
R

p(t, x; 0, y)u0(y, ω) dy

+

∫ t

0

∫
R

p(t, x; s, y)v(s, y, ω)c(v(s, y, ω)Es(−k, ω)−1) dyds (3.4)

for (t, x) ∈ (0, T ]×R, where p denotes the Green’s function associated with ∂t + D∆/2 on
R

+× R.
By the comparison theorem, see e.g. [9], a classical solution of (3.2) also has to satisfy

the a priori bounds

0 ≤ v(t, x, ω) ≤ ‖u0(·, ω)‖∞ ∨ θ0 max
0≤t≤T

Et(−k, ω) (3.5)

for (t, x) ∈ [0, T ]×R. Based on these properties (3.4) can be used to construct a contraction,
see Chapter 14 in [19] for details. Applying Banach’s fixed point theorem we obtain a
unique solution v(·, ·, ω) ∈ C((0, T ] × R) of (3.4). A classical regularity result, see e.g.
Chapter 1.7 in [9], ensures that v(·, ·, ω) ∈ C1,2((0, T ] × R). Since v was found using a
contraction method, v(t, x, ·) is measurable and (3.5) ensures that v(t, x, ·) ∈ L2(P ) for all
(t, x) ∈ [0, T ] × R. To obtain a solution for all t > 0, note that T > 0 was arbitrary.

The argument preceding the proposition ensures that u is a strong solution of (3.1).
The solution u is unique, since v is the unique solution of (3.2). The other statements
follow easily. ✷

The solution also enjoys the following properties:
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Proposition 3.4 Let u denote the strong solution of (3.1), then

(a) u(t, x) ≥ 0 for all (t, x) ∈ R
+× R a.s.

(b) If x �→ u0(x) is decreasing a.s., then x �→ u(t, x, ω) is decreasing for each
t ∈ R

+ and a.e. ω ∈ S ′.

Proof: (a) follows from (3.3), (3.5), and that Et(−k) > 0 for t ≥ 0 a.s.
(b) Let y ≥ 0. Suppose v and w solve (3.2) with the initial conditions v(0, x) = u0(x)

and w(0, x) = u0(x + y), respectively. From the comparison theorem v(t, x) ≥ w(t, x).
Applying (3.3) completes the proof. ✷

Remark 3.5 The solution, u(t, x), we obtain is the unique strong solution of (3.1). Note
also that we have shown the existence of a unique strong solution to a nonlinear SPDE,
where the nonlinear term, uc(u), does not satisfy a global Lipschitz condition.

Travelling waves do not form under arbitrary initial conditions, e.g., u0 ≡ const ≥ 0.
Later we shall assume u0 = χ(−∞, f(ω)], where f is an FT -adapted random variable for some
T > 0. The following remark gives a representation formula for the solution, u, for large
times, when u0 is B⊗FT -measurable. This formula turns out to be very useful in Section 4.

Remark 3.6 Let u0 be B⊗FT -measurable for some T ≥ 0. Suppose v(t, x, ω) is a classical
solution of (3.2) for a.e. ω ∈ S ′. Then v satisfies the Feynman-Kac formula

v(t, x, ω) = Ē

[
u0(x +

√
DB̄t, ω) exp

(∫ t

0

c
(
v(t − s, x +

√
DB̄s, ω)Et−s(−k, ω)−1

)
ds

)]

for a.e. ω ∈ S ′, where B̄ = {B̄t; t ≥ 0} is a Brownian motion defined on an auxiliary
probability space, (Ω̄, F̄ , P̄ ), and Ē denotes the expectation with respect to P̄ . To obtain u
from v, we substitute ω−kχ[0,t] for ω in v and multiply by Et(k). Since u0(x) is FT -adapted,
u0(x, ω − kχ[0,t]) = u0(x, ω − kχ[0,T ]) for T ≤ t ≤ ∞. A straightforward calculation shows
that Es(−k, ω − kχ[0,t])

−1 = Es(k, ω) for all 0 ≤ s ≤ t ≤ ∞. Therefore v(t, x, ω − kχ[0,t]) =
v(t, x, ω−k) for all t ≥ T . Let ṽ(t, x, ω) := v(t, x, ω−k), then u(t, x, ω) = ṽ(t, x, ω)Et(k, ω)
for t ≥ T , where ṽ satisfies

∂

∂t
ṽ =

D

2
∆ṽ + ṽc(ṽEt(k)), ṽ(0, x, ω)) = u0(x, ω − k) (3.6)

for (t, x) ∈ R
+× R a.e. ω ∈ S ′. Since ṽ is a strong solution of (3.6), ṽ almost surely

satisfies the Feynman-Kac formula

ṽ(t, x, ω) = Ē

[
u0(x +

√
DB̄t, ω − k) exp

(∫ t

0

c
(
ṽ(t − s, x +

√
DB̄s, ω)Et−s(k, ω)

)
ds

)]
,

for (t, x) ∈ R
+× R.
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We sum up our results in this section the following theorem:

Theorem 3.7 (a) Let D > 0, k ∈ L2
loc(R

+), c ∈ C1(R+), and suppose there
exists θ0 > 0 such that c(θ) ≤ 0 for all θ ≥ θ0. Assume u0 ∈ L∞(S ′; L∞(R)) is
such that x �→ u0(x, ω) is piecewise continuous and nonnegative for a.e. ω ∈ S ′.
Then (3.1) has a unique nonnegative strong solution.

(b) If, in addition to the assumptions above, u0 is B ⊗ FT -measurable for some
0 ≤ T < ∞, then

u(t, x, ω) = ṽ(t, x, ω)Et(k, ω) for (t, x) ∈ [T,∞) × R,

where ṽ satisfies (3.6) for all (t, x) ∈ R
+× R.

(c) If, in addition to the conditions in (a), x �→ u0(x, ω) is decreasing a.s., then
x �→ u(t, x, ω) is decreasing almost surely for every t ≥ 0.

3.2 Adapted case

Suppose u0(x) is F0-measurable for every x ∈ R, k = k(s, ω) is Itô integrable on compact
time intervals, and that u(t, x) is a strong solution of (3.1). Let b = D∆u/2 + uc(u) and
σ = ku, then ut solves the diffusion equation

dut = b dt + σ dWt, ut|t=0 = u0,

for each x ∈ R. Let Yt := (Et(k))−1 = exp(−
∫ t

0
ks dWs + 1

2

∫ t

0
k2

s ds), then Yt satisfies

dYt = k2
t Yt dt − ktYt dWt, Y0 = 1.

Itô’s formula shows that ṽ(t, x) = u(t, x)Yt satisfies

∂

∂t
ṽ(t, x) =

D

2
∆ṽ(t, x) + ṽ(t, x)c(Et(k)ṽ(t, x)), ṽ(0, x) = u0(x). (3.7)

Again we have arrived at a PDE where ω enters as a parameter only. Moreover, it is not
difficult to show that if (3.7) has a unique solution ṽ for almost every ω, then u(t, x) =
ṽ(t, x)Et(k) is the unique strong solution of (3.1).

Arguing as in the previous section, one can prove the following result:

Theorem 3.8 (a) Let D > 0, c ∈ C1(R+), and suppose there exists θ0 > 0
such that c(θ) ≤ 0 for all θ ≥ θ0. Assume k(t, ω) is Itô-integrable on compact
time intervals and u0 ∈ L∞(S ′; L∞(R)) is such that x �→ u0(x, ω) is piecewise
continuous and nonnegative for a.e. ω ∈ S ′. Suppose also that u0(x) is F0-
measurable for x ∈ R. Then (3.1) has a unique nonnegative strong solution,
u(t, x), given by

u(t, x, ω) = ṽ(t, x, ω)Et(k, ω) for (t, x) ∈ R
+× R,

where ṽ almost surely satisfies (3.7) for (t, x) ∈ R
+× R.

(b) If, in addition to the assumptions above, x �→ u0(x, ω) is decreasing a.s.,
then x �→ u(t, x, ω) is decreasing a.s. for every t ≥ 0.
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4 Travelling Waves for the Stochastic KPP Equation

Below we study the solution of (3.1) for large time and space. First we would like to remind
the reader of the behavior in the deterministic case:

If c is strictly decreasing, k ≡ 0, and u0 = χ(−∞,0], the solution of (3.1) tends to a
travelling wave. With Freidlin’s point of view, i.e., if we consider the solution’s limit as
time and space tend to infinity and ignore questions concerning the wave’s shape, this can
be expressed as

lim
t→∞

inf
x<t(

√
2c0D−h)

u(t, x) = c−1(0) and lim
t→∞

sup
x>t(

√
2c0D+h)

u(t, x) = 0, (4.1)

for any h > 0, where c0 := c(0). We call α =
√

2c0D the speed of the wave. On the right
hand side of the line x = αt the solution tends to 0 and on the left hand side it tends to
c−1(0), where c−1(·) denotes the inverse of c(·).

In the following paragraphs we study how the solution of (3.1) behaves as time tends
to infinity in Case (A) and Case (B) classified in Section 1.

4.1 Strong noise

We first consider Case (A). Suppose k ∈ L2
loc(R

+) is deterministic and define

a∗ := lim inf
t→∞

1

2t

∫ t

0

k(s)2 ds.

Theorem 4.1 Suppose the conditions in Theorem 3.7 (a) hold and let u(t, x) denote the
strong solution of (3.1). If a∗ > max0≤θ≤θ0 c(θ), then for almost every ω ∈ S ′,

0 ≤ u(t, x, ω) ≤ ‖u0‖∞ exp

(
t max

θ
c(θ) +

∫ t

0

k(s) dWs(ω) − 1

2

∫ t

0

k(s)2 ds

)
→ 0,

as t → ∞, for all x ∈ R.

Proof: Let u denote the solution of (3.1). Then u(t, x, ω) = v(t, x, ω− kχ[0,t])Et(k, ω) from
(3.3), where v satisfies

v(t, x, ω) = Ē

[
u0(x +

√
DB̄t, ω) exp

(∫ t

0

c(v(t − s, x +
√

DB̄s, ω)Et−s(−k, ω)−1) ds

)]

≤ ‖u0‖∞ exp
(
t max

θ
c(θ)

)
,

for all (t, x) ∈ [0,∞) × R. It follows that for almost every ω ∈ S ′,

0 ≤ u(t, x, ω) ≤ ‖u0‖∞ exp

(
t max

θ
c(θ) +

∫ t

0

k(s) dWs(ω) − 1

2

∫ t

0

k(s)2 ds

)

= ‖u0‖∞ exp

(∫ t

0

k(s) dWs(ω) − (
1

2t

∫ t

0

k(s)2ds − max
θ

c(θ))t

)

≤ ‖u0‖∞ exp

(∫ t

0

k(s) dWs(ω) − 1

2
(a∗ − max

θ
c(θ))t

)
→ 0,
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as t → ∞, for all x ∈ R. The convergence part follows easily from Doob’s inequality and
a∗ − maxθ c(θ) > 0. ✷

We may argue similarly in Case (B). Suppose k(t, ω) is Itô-integrable on compact time
intervals and define

a∗(ω) := lim inf
t→∞

1

2t

∫ t

0

k(s, ω)2 ds.

Theorem 4.2 Suppose the conditions in Theorem 3.8 (a) are satisfied and let u(t, x) denote
the strong solution of (3.1). If A = {ω ∈ S ′; a∗(ω) > maxθ c(θ)}, then for a.e. ω ∈ A,

u(t, x, ω) → 0 as t → ∞,

for all x ∈ R.

Thus, for a.a. ω such that a∗ > maxθ c(θ), the solution of (3.1) tends to zero (uniformly in
x) as t tends to infinity. Put differently, if the noise is sufficiently strong the wave structure
for the corresponding deterministic equation is destroyed. This is not surprising considering
that the solution of the SODE we obtain from (3.1) by letting D = 0 also vanishes if the
noise is sufficiently strong. This in fact follows immediately from our results. See [1] and
the references therein for alternative discussions.

4.2 Moderate noise

When the noise is moderately strong, the solution of (3.1) displays a more complex behavior
than what we found in the previous section.

Theorem 4.3 Suppose the conditions in Theorem 3.7 (a) are satisfied and let u denote
the strong solution of (3.1). Assume that c′(θ) ≤ 0 for θ > 0 and u0(x, ω) = χ(−∞,f(ω)](x),
where f is an FT -measurable random variable for some 0 ≤ T < ∞. If k ∈ L2

loc(R+)
(deterministic) is such that the limit

a := lim
t→∞

1

2t

∫ t

0

k(s)2 ds

exists and 0 ≤ a ≤ c0 := c(0), then for any h > 0

lim
t→∞

sup
x>t(α+h)

u(t, x) = 0 a.s.,

where α =
√

2(c0 − a)D.

Proof: Fix arbitrary h > 0 and choose 0 < ε < h(h + 2α)/4D, then for a.e. ω ∈ S ′ there
is t0 = t0(ε, ω) ≥ T such that

e−(a+ε)t ≤ Et(k, ω) ≤ e−(a−ε)t for t ≥ t0. (4.2)

10



Let ω ∈ S ′ be such that (4.2) holds and consider

Vt =
D

2
∆V + V c(e−(a+ε)tV ), V |t=t0 = V0.

By the comparison theorem, see e.g. [9],

V (t, x) ≥ ṽ(t, x) for (t, x) ∈ [t0,∞) × R, (4.3)

if V0(x) ≥ ṽ(t0, x) for x ∈ R, where ṽ denotes the solution of (3.6). Define

V0(x) :=
ec0t0

√
2πt0

∫ (f(ω−k)−x)/
√

D

−∞
e−z2/2t0 dz for x ∈ R,

and note from the Feyman-Kac formula for ṽ in Remark 3.6, that V0(x) ≥ ṽ(t0, x) for all
x ∈ R. Let

w(t, x) = V (t + t0, x) exp(−(a + ε)(t + t0)), (4.4)

then w satisfies

wt =
D

2
∆w + w(c(w) − a − ε), w|t=0 = e−(a+ε)t0V0.

The implicit Feynman-Kac formula for w shows that

w(t, x) ≤ ec0t−(a+ε)(t0+t)Ē[V0(x +
√

DB̄t)] for (t, x) ∈ R
+× R. (4.5)

¿From Theorem 3.7 (b), (4.3), (4.4), and (4.5) we obtain

u(t + t0, x) = ṽ(t + t0, x)Et+t0(k) ≤ ec0tĒ[V0(x +
√

DB̄t)]Et+t0(k) (4.6)

for all (t, x) ∈ R
+× R. Using the definition of V0, it is not difficult to show that

ec0tĒ
[
V0(x +

√
DB̄t)

]
=

ec0(t+t0)

2π
√

t t0

∫ ∞

−∞

∫ (f(ω−k)−x)/
√

D−y

−∞
e−z2/(2t0) dze−y2/(2t) dy

= ec0(t0+t)P̄

(
B̄t+t0 <

f(ω − k) − x√
D

)
.

Using Doob’s inequality ensures that for any β > 0 there is a t1 = t1(ε, β, ω) ≥ 0 such that

P̄

(
B̄t+t0 <

f(ω − k) − β(t + t0)√
D

)
≤ exp

{(
− β2

2D
+ ε

)
(t + t0)

}
,

for t > t1. Combining this with (4.2) and (4.6) gives

0 ≤ u(t + t0, β(t + t0), ω) ≤ K exp((c0 − a + 2ε − β2

2D
)t)
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for t > t1. Our choice of ε ensures that

u(t, (α + h)t, ω) → 0 as t → ∞.

The theorem now follows from Theorem 3.7 (c) and observing that h > 0 and ω were
arbitrary. ✷

An argument similar to the one above gives the corresponding result in Case (B), when
u0 = χ(−∞,0] and k(t, ω) is Itô integrable on compact time intervals:

Theorem 4.4 Suppose the conditions in Theorem 3.8 (a) are satisfied and let u denote
the strong solution of (3.1). Assume c is decreasing and u0 = χ(−∞,0]. Let

a(ω) := lim
t→∞

1

2t

∫ t

0

k(s, ω)2 ds,

for those ω ∈ S ′ for which the limit exists and leave a(ω) undefined otherwise. Then for
a.e. ω ∈ S ′ such that 0 ≤ a(ω) ≤ c0 := c(0),

lim
t→∞

sup
x>(α(ω)+h)t

u(t, x, ω) = 0

for any h > 0, where α(ω) =
√

2(c0 − a(ω))D.

It is more complicated to obtain bounds on the solution when x < t
√

2(c0 − a)D.
We begin by comparing u with w, the solution of another partial differential equation.
The proof is essentially the same as the proof of Lemma 3.1 in [6] and Lemma 1.6 in [4].
Note, however, that for the problems studied here, w satisfies a random partial differential
equation. But since ω only enters as a parameter in the equation for w, it is easier to study
the asymptotic properties of w than it is to study the asymptotic properties of u directly.

Theorem 4.5 Assume the conditions in Theorem 3.7 (a) and (b) are satisfied and let u
be the strong solution of (3.1). Suppose that for a.e. ω ∈ S ′, w is a classical solution of

∂w

∂t
=

D

2
∆w + w(c(w) − 1

2
k2), w(0, ·, ω) = u0(·, ω − k); (t, x) ∈ R

+× R. (4.7)

If c is decreasing, then

w(t, x) exp

(
inf

0≤σ≤t

∫ t

σ

ks dWs

)
≤ u(t, x) (4.8)

≤ w(t, x) exp

(
sup

0≤σ≤t

∫ t

σ

ks dWs

)
, t ≥ T, x ∈ R;

for a.e. ω ∈ S ′.
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Proof: Suppose, to obtain a contradiction, that there is (t′, x′) ∈ [T,∞) × R such that

u(t′, x′) > w(t′, x′) exp

(
sup

0≤σ≤t′

∫ t′

σ

ks dWs

)
, (4.9)

then u(t′, x′) > w(t′, x′). To simplify notation let X̄ t′,x′
s = (t′ − s, x′ +

√
DB̄s) for s ≥ 0 and

let ũ(t, x) := ṽ(t, x)Et(k) for (t, x) ∈ R
+×R, where ṽ solves (3.6). Recall from Theorem 3.7

(b) that ũ(t, x) = u(t, x) when t ≥ T . Define the stopping time

τ̄ := inf{s > 0; ũ(X̄ t′,x′
s )) = w(X̄ t′,x′

s )},

for each ω ∈ S ′. Using the strong Markov property we obtain that

u(t′, x′) = Ē

[
ũ(X̄ t′,x′

τ̄ ) exp

(∫ τ̄

0

c(ũ(X̄ t′,x′
s )) ds +

∫ t′

t′−τ̄

ks dWs −
1

2

∫ t′

t′−τ̄

k2
s ds

)]

< Ē

[
w(X̄ t′,x′

τ̄ ) exp

(∫ τ̄

0

c(w(X̄ t′,x′
s )) ds − 1

2

∫ t′

t′−τ̄

k2
s ds +

∫ t′

t′−τ̄

ks dWs

)]

≤ Ē

[
w(X̄ t′,x′

τ̄ ) exp

∫ τ̄

0

[c(w(X̄ t′,x′
s )) − 1

2
k2

t′−s] ds

]
exp sup

0≤σ≤t′

∫ t′

t′−σ

ks dWs

= w(t′, x′) exp sup
0≤σ≤t′

∫ t′

σ

ks dWs,

which contradicts (4.9) and proves the upper bound in (4.9). The lower bound is shown
similarly. ✷

Arguing as above gives the corresponding result when u0 is F0-measurable and k(t, ω) is
Itô integrable on compact time intervals:

Theorem 4.6 Suppose the conditions in Theorem 3.8 (a) are satisfied and let u denote
the strong solution of (3.1). If c is decreasing and w is the classical solution of

∂w

∂t
=

D

2
∆w + w(c(w) − 1

2
k2), w|t=0 = u0, (4.10)

for almost every ω ∈ S ′, then

w(t, x) exp inf
0≤σ≤t

∫ t

σ

ks dWs ≤ u(t, x) ≤ w(t, x) exp sup
0≤σ≤t

∫ t

σ

ks dWs; (t, x) ∈ R
+× R.

To obtain more explicit bounds on the solution of (3.1), we shall study the asymptotic
behavior of the solutions to (4.7) and (4.10). The following standard result for deterministic
PDE’s, presented without proof, will play an important role. See [5, 8] for details.
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Lemma 4.7 Let D > 0, k ∈ C(R+), and let x �→ w0(x) ≥ 0 be bounded and piecewise
continuous. Suppose c ∈ C1(R+) and that there is θ0 > 0 such that c(θ) ≤ 0 for all θ ≥ θ0.
Let w be the unique classical solution of (the deterministic equation)

∂w

∂t
=

D

2
∆w + w(c(w) − 1

2
k(t)2), w|t=0 = w0, (t, x) ∈ R

+× R.

If there is a ≥ 0 such that a ≤ 1
2
k(t)2 (resp. 1

2
k(t)2 ≤ a) for all t ≥ t0 ≥ 0, then

0 ≤ w(t, x) ≤ q(t, x) (resp. 0 ≤ q(t, x) ≤ w(t, x)) for (t, x) ∈ [t0,∞) × R,

where

∂q

∂t
=

D

2
∆q + q(c(q) − a), q|t=t0(·) = w(t0, ·); (t, x) ∈ [t0,∞) × R.

Moreover, if a > maxθ c(θ), then q(t, x) ↓ 0 (uniformly in x) as t → ∞. If c is strictly
decreasing and 0 ≤ a < c0 := c(0), then for any h > 0

lim
t→∞

inf
x<t(α−h)

q(t, x) = c−1(a) and lim
t→∞

sup
x>t(α+h)

q(t, x) = 0,

where α =
√

2(c0 − a)D.

With this lemma we can study the asymptotic behavior of the solutions to (4.7) and
(4.10). The following argument applies to w satisfying (4.7) when u0 = χ(−∞,f ], for an
FT -measurable random variable f , as well as to w satisfying (4.10) when u0 = χ(−∞,0].
Assume in addition that t �→ k(t) is continuous (resp. continuous almost surely). Since ω
only enters as a parameter in the SPDE’s for w, we fix ω ∈ S ′. If there exist a2 ≥ a1 ≥ 0
such that

0 ≤ a1 ≤
1

2
k(t)2 ≤ a2, (4.11)

for t ≥ t0 ≥ 0, then Lemma 4.7 ensures

w2(t, x) ≤ w(t, x) ≤ w1(t, x) for (t, x) ∈ [t0,∞) × R,

where

∂

∂t
wi =

D

2
∆wi + wi(c(wi) − ai), wi|t=t0 = w|t=t0 ;

for t ≥ t0, x ∈ R, and i = 1, 2.
We can now apply the last part of Lemma 4.7 to obtain explicit bounds on w1 and w2

as time tends to infinity. We thereby also obtain explicit bounds on u. We consider the
situation in Theorem 4.5 in detail. If c ∈ C1(R+) is strictly decreasing and k ∈ C(R+)
satisfies (4.11) with 0 ≤ a1 ≤ a2 ≤ c0, we observe three different types of behavior: For
any ε, h > 0 and almost every ω ∈ S ′ there is t1 = t1(ω, ε, h) > 0 such that
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(i) if x < (
√

2(c0 − a2)D − h)t and t ≥ t1,

(c−1(a2) − ε) exp inf
0≤σ≤t

∫ t

σ

ks dWs ≤ u(t, x) ≤ (c−1(a1) + ε) exp sup
0≤σ≤t

∫ t

σ

ks dWs;

(ii) if (
√

2(c0 − a2)D − h)t ≤ x < (
√

2(c0 − a1)D − h)t and t ≥ t1,

0 ≤ u(t, x) ≤ (c−1(a1) + ε) exp sup
0≤σ≤t

∫ t

σ

ks dWs; and

(iii) if (
√

2(c0 − a1)D + h)t < x and t ≥ t1, then

0 ≤ u(t, x) ≤ ε.

If in addition to (4.11), the limit a = limt→∞
∫ t

0
k(s)2 ds/2t ∈ [a1, a2] exists, we may

apply Theorem 4.3 to improve the two last estimates above as follows:

(ii’) if (
√

2(c0 − a2)D − h)t ≤ x < (
√

2(c0 − a)D − h)t and t ≥ t1,

0 ≤ u(t, x) ≤ (c−1(a) + ε) exp sup
0≤σ≤t

∫ t

σ

ks dWs; and

(iii’) if (
√

2(c0 − a)D + h)t < x and t ≥ t1, then

0 ≤ u(t, x) ≤ ε.

Several remarks are in order. If a2 > c0, (i) no longer applies and the estimate in (ii)
(or (ii’)) holds for all x < (

√
2(c0 − a1)D − h)t (or x < (

√
2(c0 − a)D − h)t, respectively).

If a1 > c0 also, then u converges uniformly to 0 by the results in Section 4.1.
Observe that if k(t) doesn’t vary much for large times, i.e., if a1 − a2 is close to zero,

the region (ii) (and (ii’) if a exists) is small and we obtain more accurate estimates on u. In
particular, if k∞ = limt→∞ k(t) exists, the KPP equation for w tends to a travelling wave
as time tends to infinity. It follows that for any ε > 0 and h > 0

(c−1(k2
∞/2) − ε) exp inf

0≤σ≤t

∫ t

σ

ks dWs ≤ u(t, x) ≤ (c−1(k2
∞/2) + ε) exp sup

0≤σ≤t

∫ t

σ

ks dWs

when x < (α − h)t and t is sufficiently large, where α =
√

2(c0 − k2
∞/2)D. Moreover,

lim
t→∞

sup
x>(α+h)t

u(t, x) = 0.

Similar results are easily obtained if the assumptions in Theorem 4.6 are satisfied,
c ∈ C1(R+) is strictly decreasing, t �→ k(t, ω) is continuous almost surely, and u0 = χ(−∞,0].
Note that in this case we find that (i)-(iii) (respectively, (i), and (ii’)–(iii’)) hold for a.e.
ω ∈ S ′ for which (4.11) hold with 0 ≤ a1(ω) ≤ a2(ω) ≤ c0.
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4.3 Weak noise

If the noise is weak, a concept which is made precise in the theorems below, the solution
of (3.1) tends to the solution of the corresponding deterministic equation (k = 0 and
u0 = χ(−∞,0]) as time tends to infinity.

Theorem 4.8 Suppose the conditions in Theorem 3.7 (a) are satisfied and let u be the
strong solution of (3.1). Assume c ∈ C1(R+) is strictly decreasing and u0 = χ(−∞,f ], where
f is an FT -measurable random variable for some T ≥ 0. If k ∈ L2(R+) is deterministic,
then for any h > 0

lim
t→∞

sup
x<t(α−h)

u(t, x) = c−1(0) and lim
t→∞

sup
x>t(α+h)

u(t, x) = 0 a.s.,

where α =
√

2c0D.

Proof: ¿From Theorem 4.3 it is sufficient to show that u(t, x) tends to c−1(0) on the left
hand side of x = t

√
2c0D. If k ∈ L2(R+), there by Lebesgue’s dominated convergence

theorem exists g ∈ L1(S ′) such that∫ t

0

ks dWs −
1

2

∫ t

0

k2
s ds → g as t → ∞ (4.12)

for almost every ω ∈ S ′. Let ω ∈ S ′ be such that (4.12) holds and h > 0, then for any
ε > 0 there is t0 = t0(ω, ε) ≥ T such that

g − ε ≤
∫ t

0

ks dWs −
1

2

∫ t

0

k2
s ds ≤ g + ε, t ≥ t0.

From the comparison theorem and (4.1) we see that

e−2εc−1(0) ≤ u(t, x, ω) = ṽ(t, x, ω)Et(k, ω) ≤ e2εc−1(0),

when x < t(
√

2c0D − h) and t is sufficiently large. Since h and ε were arbitrary the result
follows. ✷

The following theorem is shown similarly.

Theorem 4.9 Suppose the conditions in Theorem 3.8 (a) are satisfied and let u be the
strong solution of (3.1). Let c ∈ C1(R+) be strictly decreasing, u0 = χ(−∞,0], and let k(t, ω)
be path continuous and Itô integrable on compact time intervals. Then for a.e. ω ∈ S ′ such
that

∫ ∞
0

k(s, ω)2 ds is finite,

lim
t→∞

sup
x<t(α−h)

u(t, x, ω) = c−1(0) and lim
t→∞

sup
x>t(α+h)

u(t, x, ω) = 0,

where h > 0 is arbitrary and α =
√

2c0D.

Note that the wave speed found above, α =
√

2c0D, coincides with the wave speed in
the deterministic case. Moreover, we have shown that the solution tends to c−1(0) on the
left hand side and 0 on the right hand side of the wave. It follows that if the noise is weak,
the stochastically perturbed equation has the same limit behavior as the corresponding
deterministic equation (k ≡ 0).
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5 Concluding Remarks

We have considered the asymptotic behavior of the solution to (3.1) in two different cases
(Case (A) and Case (B)). In both cases the solutions’ behavior in the limit depends on the
strength of the noise, i.e., the asymptotic properties of

∫ t

0
k(s)2 ds. The main difference

between the results in the two cases is that in (a) the solution behaves the same way for
a.e. ω ∈ S ′, whereas it in (b) may behave differently for different ω ∈ S ′ depending on the
asymptotic properties of

∫ t

0
k(s, ω)2 ds.

We have shown that if the noise is strong, i.e., if

lim inf
t→∞

1

2t

∫ t

0

k(s)2 ds > max
θ

c(θ),

the solution of (3.1) tends to zero (uniformly in x) as t tends to infinity. This should not
come as a surprise since the SODE that results by putting D = 0 in (3.1), behaves similarly
(see also [1] and the references therein).

When the noise is weak, i.e., if k ∈ L2(R+) or for almost evert ω ∈ S ′ such that∫ ∞
0

k(s, ω)2 ds < ∞, the solutions of the two equations we have considered tend to the
solution of the corresponding unperturbed deterministic equation.

If the noise is moderately strong, the solution of (3.1) displays a more complex behavior
than it does in the corresponding deterministic case. Note that our estimates on the solution
are not as accurate as the ones in the deterministic case, cf. (4.1). This is not surprising
considering that t �→ u(t, x) for x � 0 behaves essentially as the SODE one obtains from
(3.1) by letting D = 0 and u(0) = u0 > 0. It has been shown that the solution of this
equation with c(u) = r(1−γu), k = σ, and u0 > 0, where r > σ2/2 > 0, has a χ2 stationary
distribution with parameter η = 2r/σ2 − 1 (see [1] and the references therein). We can
therefore not expect the solution of (3.1) in the stochastic case to converge to specific values
as the solution of the corresponding deterministic problem does.

Suppose there is a constant a1 such that 0 ≤ 2a1 ≤ k2(t), for all t large enough, then
there are constants d1 and d2 with d1 < 0 < d2 such that for any h > 0

1

t
log u(t, x) < d1 if x > (

√
2(c0 − a1)D + h)t,

and

log u(t, x)√
2t log log t

≤ d2 if x < (
√

2(c0 − a1)D − h)t;

for all sufficiently large t. If there, in addition, is a constant a2 such that k2(t) ≤ 2a2 < 2c0

for all t large enough, we can find d3 < 0 such that

d3 ≤
log u(t, x)√
2t log log t

≤ d2 if x < (
√

2(c0 − a2)D − h)t,

for all sufficiently large t.
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Observe the similarities with the deterministic case. We do not obtain a convergence
as in the deterministic case, but we still observe two distinct types of behavior separated
by a cone. The width of the cone depends on how much k varies for large t and tends to
zero if a2 − a1 tends to zero.

Note also that as a1 is increased from 0 to c0 the region, where the solution converges
to zero exponentially, grows. For a1 = 0, the region coincides with the one found in the
deterministic case and as a1 approaches c0, the region approaches the first quadrant in the
plane. One may interpret this as the speed of the wave is reduced as a1 is increased. If
a1 > c0, the noise is strong and the solution converges exponentially to 0 (uniformly in x)
as t tends to infinity.

Our results also agree with the ones in [4], where a related problem for deterministic k
and smooth bell-shaped initial conditions was studied using Hamilton-Jacobi theory.
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