What if we require a 95% confidence interval with a known
precision?
That is, we want to know that
lies within a certain interval with 95% confidence.
Then we will have to design our experiment well! In
particular we will have to select an appropriate sample size.
We know that the larger the sample size, the "tighter" the
normal curve of the distribution of
.
Hence n determines how tight the curve needs to be,
by the equation
, where the value of z corresponds to the
desired confidence (in this case, 95%), and E
corresponds to the "half-width" of the interval.
Example:
#4, p. 227
Notice that it's not necessary to know the mean
value in order to calculate the sample size!
Only the margin of error E, z,
and the known value of
.