Last Time | Next Time |
What's 45/13?
Answer's on the left! |
|
45 = 26 + 13 + 4 + 2 | |||||||||||||||
Division: | |||||||||||||||||
Answers on the left | Doubling in the middle | Build on the right |
First of all, the Egyptians knew enough to distribute out all the pies they could at the outset:
\[ \frac{45}{13} =\frac{39+6}{13} =3 + \frac{6}{13} \] Now we have to deal with that fraction on the right (using the Fraudini trick): \[ \frac{45}{13} =3 + \frac{6}{13} =3+\frac{4}{13}+\frac{2}{13} =3+2\left(\frac{2}{13}\right) + \frac{2}{13} \] We look up $\frac{2}{13}$ in our unit fraction table, and \[ \frac{45}{13} =3+ 2\left(\frac{1}{8}+\frac{1}{52}+\frac{1}{104}\right) + \left(\frac{1}{8}+\frac{1}{52}+\frac{1}{104}\right) \] or \[ \frac{45}{13} =3+ \frac{1}{4}+\frac{1}{26}+\frac{1}{52}+ \frac{1}{8}+\frac{1}{52}+\frac{1}{104} \] Remember that you can't repeat fractions, so now you have a little more work to do: combine the two $\frac{1}{52}$ terms, to get one $\frac{1}{26}$ term: \[ \frac{45}{13}=3 + \frac{1}{4}+\frac{1}{26}+\frac{1}{26}+ \frac{1}{8}+\frac{1}{104} \] and then combine the two $\frac{1}{26}$ terms, to get one $\frac{1}{13}$ term: \[ \frac{45}{13}=3 + \frac{1}{4}+\frac{1}{13} + \frac{1}{8}+\frac{1}{104} \] And then maybe put them in order, \[ \frac{45}{13}=3 + \frac{1}{4} + \frac{1}{8} + \frac{1}{13} + \frac{1}{104} \] Finally, when you're done you can plug both sides into your calculator to make sure that you've done it right: \[ 3.461538 = 3.461538 \] We're good! Ready to move on to that next problem....
I've told you that I like to give you ways to make money, and this is the best one I've got. So learn this game! Play it for keeps, and you'll make a lot of money over your lifetime. You'll also score points on your next exam....
Number of counters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Winner (1 or 2? -- if they play right!) | X |