Processing math: 0%
Skip to main content
\newenvironment{mat}{\left[\begin{array}}{\end{array}\right]} \newcommand{\colvec}[1]{\left[\begin{matrix}#1 \end{matrix}\right]} \newcommand{\rowvec}[1]{[\begin{matrix} #1 \end{matrix}]} \newcommand{\definiteintegral}[4]{\int_{#1}^{#2}\,#3\,d#4} \newcommand{\indefiniteintegral}[2]{\int#1\,d#2} \def\u{\underline} \def\summ{\sum\limits} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & }

Section4Quadratic Functions

Consider the function q(x)=ax^2+bx+c, where a \ne 0 (so that it's truly quadratic, and not linear).

We want to consider several features of q, including

  • shape (a parabola)
  • the focus
  • the roots

Equivalent expressions for q(x) are

  • q(x)=ax^2+bx+c
  • q(x)=a(x-m)^2+h
  • q(x)=a(x-r_1)(x-r_2)

The values of m and h, and the roots r_1 and r_2, are given using basic algebra:

  • The vertex of the parabola is at (m,h)=(\frac{-b}{2a},c-\frac{b^2}{4a})
  • The roots of the parabola (where it intercepts the x-axis) are at \{r_1,r_2\}=\{\frac{-b \pm \sqrt{b^2-4ac}}{2a}\}
  • The focal point of the parabola is at a height where the slope of the tangent line is 1, at (m,p)=(\frac{-b}{2a},h+\frac{1}{4a})

a \gt 0: A bowl (with a "double root"):

a \lt 0: An umbrella, with symmetric roots: