Section4Quadratic FunctionsΒΆ permalink
Consider the function q(x)=ax^2+bx+c, where a \ne 0 (so that it's truly quadratic, and not linear).
We want to consider several features of q, including
- shape (a parabola)
- the focus
- the roots
Equivalent expressions for q(x) are
- q(x)=ax^2+bx+c
- q(x)=a(x-m)^2+h
- q(x)=a(x-r_1)(x-r_2)
The values of m and h, and the roots r_1 and r_2, are given using basic algebra:
- The vertex of the parabola is at (m,h)=(\frac{-b}{2a},c-\frac{b^2}{4a})
- The roots of the parabola (where it intercepts the x-axis) are at \{r_1,r_2\}=\{\frac{-b \pm \sqrt{b^2-4ac}}{2a}\}
- The focal point of the parabola is at a height where the slope of the tangent line is 1, at (m,p)=(\frac{-b}{2a},h+\frac{1}{4a})
a \gt 0: A bowl (with a "double root"):
xxxxxxxxxx
a=1
b=-2
c=1
h=c-b^2/(4*a)
p=1/(4*a)+h
f(x) = a*x^2+b*x+c
g(x) = h
e(x) = p
p1=plot(f, (x, -2, 4), color='green', thickness=3)
p2=plot(g, (x, -2, 4), color='blue', thickness=1)
p3=plot(e, (x, -2, 4), color='red', thickness=1)
p1+p2+p3
a \lt 0: An umbrella, with symmetric roots:
xxxxxxxxxx
a=-1
b=0
c=1
h=c-b^2/(4*a)
p=1/(4*a)+h
f(x) = a*x^2+b*x+c
g(x) = h
e(x) = p
p1=plot(f, (x, -2, 2), color='green', thickness=3)
p2=plot(g, (x, -2, 2), color='blue', thickness=1)
p3=plot(e, (x, -2, 2), color='red', thickness=1)
p1+p2+p3